mirror of
https://github.com/gonum/gonum.git
synced 2025-10-19 05:24:52 +08:00
285 lines
7.6 KiB
Go
285 lines
7.6 KiB
Go
// Copyright ©2014 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package simple
|
|
|
|
import (
|
|
"sort"
|
|
|
|
"gonum.org/v1/gonum/graph"
|
|
"gonum.org/v1/gonum/graph/internal/ordered"
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
// DirectedMatrix represents a directed graph using an adjacency
|
|
// matrix such that all IDs are in a contiguous block from 0 to n-1.
|
|
// Edges are stored implicitly as an edge weight, so edges stored in
|
|
// the graph are not recoverable.
|
|
type DirectedMatrix struct {
|
|
mat *mat.Dense
|
|
nodes []graph.Node
|
|
|
|
self float64
|
|
absent float64
|
|
}
|
|
|
|
// NewDirectedMatrix creates a directed dense graph with n nodes.
|
|
// All edges are initialized with the weight given by init. The self parameter
|
|
// specifies the cost of self connection, and absent specifies the weight
|
|
// returned for absent edges.
|
|
func NewDirectedMatrix(n int, init, self, absent float64) *DirectedMatrix {
|
|
matrix := make([]float64, n*n)
|
|
if init != 0 {
|
|
for i := range matrix {
|
|
matrix[i] = init
|
|
}
|
|
}
|
|
for i := 0; i < len(matrix); i += n + 1 {
|
|
matrix[i] = self
|
|
}
|
|
return &DirectedMatrix{
|
|
mat: mat.NewDense(n, n, matrix),
|
|
self: self,
|
|
absent: absent,
|
|
}
|
|
}
|
|
|
|
// NewDirectedMatrixFrom creates a directed dense graph with the given nodes.
|
|
// The IDs of the nodes must be contiguous from 0 to len(nodes)-1, but may
|
|
// be in any order. If IDs are not contiguous NewDirectedMatrixFrom will panic.
|
|
// All edges are initialized with the weight given by init. The self parameter
|
|
// specifies the cost of self connection, and absent specifies the weight
|
|
// returned for absent edges.
|
|
func NewDirectedMatrixFrom(nodes []graph.Node, init, self, absent float64) *DirectedMatrix {
|
|
sort.Sort(ordered.ByID(nodes))
|
|
for i, n := range nodes {
|
|
if int64(i) != n.ID() {
|
|
panic("simple: non-contiguous node IDs")
|
|
}
|
|
}
|
|
g := NewDirectedMatrix(len(nodes), init, self, absent)
|
|
g.nodes = nodes
|
|
return g
|
|
}
|
|
|
|
// Node returns the node in the graph with the given ID.
|
|
func (g *DirectedMatrix) Node(id int64) graph.Node {
|
|
if !g.has(id) {
|
|
return nil
|
|
}
|
|
if g.nodes == nil {
|
|
return Node(id)
|
|
}
|
|
return g.nodes[id]
|
|
}
|
|
|
|
// Has returns whether the node exists within the graph.
|
|
func (g *DirectedMatrix) Has(n graph.Node) bool {
|
|
return g.has(n.ID())
|
|
}
|
|
|
|
func (g *DirectedMatrix) has(id int64) bool {
|
|
r, _ := g.mat.Dims()
|
|
return 0 <= id && id < int64(r)
|
|
}
|
|
|
|
// Nodes returns all the nodes in the graph.
|
|
func (g *DirectedMatrix) Nodes() []graph.Node {
|
|
if g.nodes != nil {
|
|
nodes := make([]graph.Node, len(g.nodes))
|
|
copy(nodes, g.nodes)
|
|
return nodes
|
|
}
|
|
r, _ := g.mat.Dims()
|
|
nodes := make([]graph.Node, r)
|
|
for i := 0; i < r; i++ {
|
|
nodes[i] = Node(i)
|
|
}
|
|
return nodes
|
|
}
|
|
|
|
// Edges returns all the edges in the graph.
|
|
func (g *DirectedMatrix) Edges() []graph.Edge {
|
|
var edges []graph.Edge
|
|
r, _ := g.mat.Dims()
|
|
for i := 0; i < r; i++ {
|
|
for j := 0; j < r; j++ {
|
|
if i == j {
|
|
continue
|
|
}
|
|
if w := g.mat.At(i, j); !isSame(w, g.absent) {
|
|
edges = append(edges, Edge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w})
|
|
}
|
|
}
|
|
}
|
|
return edges
|
|
}
|
|
|
|
// From returns all nodes in g that can be reached directly from n.
|
|
func (g *DirectedMatrix) From(n graph.Node) []graph.Node {
|
|
id := n.ID()
|
|
if !g.has(id) {
|
|
return nil
|
|
}
|
|
var neighbors []graph.Node
|
|
_, c := g.mat.Dims()
|
|
for j := 0; j < c; j++ {
|
|
if int64(j) == id {
|
|
continue
|
|
}
|
|
// id is not greater than maximum int by this point.
|
|
if !isSame(g.mat.At(int(id), j), g.absent) {
|
|
neighbors = append(neighbors, g.Node(int64(j)))
|
|
}
|
|
}
|
|
return neighbors
|
|
}
|
|
|
|
// To returns all nodes in g that can reach directly to n.
|
|
func (g *DirectedMatrix) To(n graph.Node) []graph.Node {
|
|
id := n.ID()
|
|
if !g.has(id) {
|
|
return nil
|
|
}
|
|
var neighbors []graph.Node
|
|
r, _ := g.mat.Dims()
|
|
for i := 0; i < r; i++ {
|
|
if int64(i) == id {
|
|
continue
|
|
}
|
|
// id is not greater than maximum int by this point.
|
|
if !isSame(g.mat.At(i, int(id)), g.absent) {
|
|
neighbors = append(neighbors, g.Node(int64(i)))
|
|
}
|
|
}
|
|
return neighbors
|
|
}
|
|
|
|
// HasEdgeBetween returns whether an edge exists between nodes x and y without
|
|
// considering direction.
|
|
func (g *DirectedMatrix) HasEdgeBetween(x, y graph.Node) bool {
|
|
xid := x.ID()
|
|
if !g.has(xid) {
|
|
return false
|
|
}
|
|
yid := y.ID()
|
|
if !g.has(yid) {
|
|
return false
|
|
}
|
|
// xid and yid are not greater than maximum int by this point.
|
|
return xid != yid && (!isSame(g.mat.At(int(xid), int(yid)), g.absent) || !isSame(g.mat.At(int(yid), int(xid)), g.absent))
|
|
}
|
|
|
|
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
|
|
// The node v must be directly reachable from u as defined by the From method.
|
|
func (g *DirectedMatrix) Edge(u, v graph.Node) graph.Edge {
|
|
if g.HasEdgeFromTo(u, v) {
|
|
// x.ID() and y.ID() are not greater than maximum int by this point.
|
|
return Edge{F: g.Node(u.ID()), T: g.Node(v.ID()), W: g.mat.At(int(u.ID()), int(v.ID()))}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// HasEdgeFromTo returns whether an edge exists in the graph from u to v.
|
|
func (g *DirectedMatrix) HasEdgeFromTo(u, v graph.Node) bool {
|
|
uid := u.ID()
|
|
if !g.has(uid) {
|
|
return false
|
|
}
|
|
vid := v.ID()
|
|
if !g.has(vid) {
|
|
return false
|
|
}
|
|
// uid and vid are not greater than maximum int by this point.
|
|
return uid != vid && !isSame(g.mat.At(int(uid), int(vid)), g.absent)
|
|
}
|
|
|
|
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
|
|
// If x and y are the same node or there is no joining edge between the two nodes the weight
|
|
// value returned is either the graph's absent or self value. Weight returns true if an edge
|
|
// exists between x and y or if x and y have the same ID, false otherwise.
|
|
func (g *DirectedMatrix) Weight(x, y graph.Node) (w float64, ok bool) {
|
|
xid := x.ID()
|
|
yid := y.ID()
|
|
if xid == yid {
|
|
return g.self, true
|
|
}
|
|
if g.has(xid) && g.has(yid) {
|
|
// xid and yid are not greater than maximum int by this point.
|
|
return g.mat.At(int(xid), int(yid)), true
|
|
}
|
|
return g.absent, false
|
|
}
|
|
|
|
// SetEdge sets e, an edge from one node to another. If the ends of the edge are not in g
|
|
// or the edge is a self loop, SetEdge panics.
|
|
func (g *DirectedMatrix) SetEdge(e graph.Edge) {
|
|
fid := e.From().ID()
|
|
tid := e.To().ID()
|
|
if fid == tid {
|
|
panic("simple: set illegal edge")
|
|
}
|
|
if int64(int(fid)) != fid {
|
|
panic("simple: unavailable from node ID for dense graph")
|
|
}
|
|
if int64(int(tid)) != tid {
|
|
panic("simple: unavailable to node ID for dense graph")
|
|
}
|
|
// fid and tid are not greater than maximum int by this point.
|
|
g.mat.Set(int(fid), int(tid), e.Weight())
|
|
}
|
|
|
|
// RemoveEdge removes e from the graph, leaving the terminal nodes. If the edge does not exist
|
|
// it is a no-op.
|
|
func (g *DirectedMatrix) RemoveEdge(e graph.Edge) {
|
|
fid := e.From().ID()
|
|
if !g.has(fid) {
|
|
return
|
|
}
|
|
tid := e.To().ID()
|
|
if !g.has(tid) {
|
|
return
|
|
}
|
|
// fid and tid are not greater than maximum int by this point.
|
|
g.mat.Set(int(fid), int(tid), g.absent)
|
|
}
|
|
|
|
// Degree returns the in+out degree of n in g.
|
|
func (g *DirectedMatrix) Degree(n graph.Node) int {
|
|
id := n.ID()
|
|
if !g.has(id) {
|
|
return 0
|
|
}
|
|
var deg int
|
|
r, c := g.mat.Dims()
|
|
for i := 0; i < r; i++ {
|
|
if int64(i) == id {
|
|
continue
|
|
}
|
|
// id is not greater than maximum int by this point.
|
|
if !isSame(g.mat.At(int(id), i), g.absent) {
|
|
deg++
|
|
}
|
|
}
|
|
for i := 0; i < c; i++ {
|
|
if int64(i) == id {
|
|
continue
|
|
}
|
|
// id is not greater than maximum int by this point.
|
|
if !isSame(g.mat.At(i, int(id)), g.absent) {
|
|
deg++
|
|
}
|
|
}
|
|
return deg
|
|
}
|
|
|
|
// Matrix returns the mat.Matrix representation of the graph. The orientation
|
|
// of the matrix is such that the matrix entry at G_{ij} is the weight of the edge
|
|
// from node i to node j.
|
|
func (g *DirectedMatrix) Matrix() mat.Matrix {
|
|
// Prevent alteration of dimensions of the returned matrix.
|
|
m := *g.mat
|
|
return &m
|
|
}
|