mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00
131 lines
3.5 KiB
Go
131 lines
3.5 KiB
Go
// Copyright ©2016 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package native
|
||
|
||
import (
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/lapack"
|
||
)
|
||
|
||
// Dorgql generates the m×n matrix Q with orthonormal columns defined as the
|
||
// last n columns of a product of k elementary reflectors of order m
|
||
// Q = H_{k-1} * ... * H_1 * H_0.
|
||
//
|
||
// It must hold that
|
||
// 0 <= k <= n <= m,
|
||
// and Dorgql will panic otherwise.
|
||
//
|
||
// On entry, the (n-k+i)-th column of A must contain the vector which defines
|
||
// the elementary reflector H_i, for i=0,...,k-1, and tau[i] must contain its
|
||
// scalar factor. On return, a contains the m×n matrix Q.
|
||
//
|
||
// tau must have length at least k, and Dorgql will panic otherwise.
|
||
//
|
||
// work must have length at least max(1,lwork), and lwork must be at least
|
||
// max(1,n), otherwise Dorgql will panic. For optimum performance lwork must
|
||
// be a sufficiently large multiple of n.
|
||
//
|
||
// If lwork == -1, instead of computing Dorgql the optimal work length is stored
|
||
// into work[0].
|
||
//
|
||
// Dorgql is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorgql(m, n, k int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
switch {
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case m < n:
|
||
panic(mLTN)
|
||
case k < 0:
|
||
panic(kLT0)
|
||
case k > n:
|
||
panic(kGTN)
|
||
case lwork < max(1, n) && lwork != -1:
|
||
panic(badWork)
|
||
case len(work) < lwork:
|
||
panic(shortWork)
|
||
}
|
||
if lwork != -1 {
|
||
checkMatrix(m, n, a, lda)
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
}
|
||
|
||
if n == 0 {
|
||
work[0] = 1
|
||
return
|
||
}
|
||
|
||
nb := impl.Ilaenv(1, "DORGQL", " ", m, n, k, -1)
|
||
if lwork == -1 {
|
||
work[0] = float64(n * nb)
|
||
return
|
||
}
|
||
|
||
nbmin := 2
|
||
var nx, ldwork int
|
||
iws := n
|
||
if nb > 1 && nb < k {
|
||
// Determine when to cross over from blocked to unblocked code.
|
||
nx = max(0, impl.Ilaenv(3, "DORGQL", " ", m, n, k, -1))
|
||
if nx < k {
|
||
// Determine if workspace is large enough for blocked code.
|
||
iws = n * nb
|
||
if lwork < iws {
|
||
// Not enough workspace to use optimal nb: reduce nb and determine
|
||
// the minimum value of nb.
|
||
nb = lwork / n
|
||
nbmin = max(2, impl.Ilaenv(2, "DORGQL", " ", m, n, k, -1))
|
||
}
|
||
ldwork = nb
|
||
}
|
||
}
|
||
|
||
var kk int
|
||
if nb >= nbmin && nb < k && nx < k {
|
||
// Use blocked code after the first block. The last kk columns are handled
|
||
// by the block method.
|
||
kk = min(k, ((k-nx+nb-1)/nb)*nb)
|
||
|
||
// Set A(m-kk:m, 0:n-kk) to zero.
|
||
for i := m - kk; i < m; i++ {
|
||
for j := 0; j < n-kk; j++ {
|
||
a[i*lda+j] = 0
|
||
}
|
||
}
|
||
}
|
||
|
||
// Use unblocked code for the first or only block.
|
||
impl.Dorg2l(m-kk, n-kk, k-kk, a, lda, tau, work)
|
||
if kk > 0 {
|
||
// Use blocked code.
|
||
for i := k - kk; i < k; i += nb {
|
||
ib := min(nb, k-i)
|
||
if n-k+i > 0 {
|
||
// Form the triangular factor of the block reflector
|
||
// H = H_{i+ib-1} * ... * H_{i+1} * H_i.
|
||
impl.Dlarft(lapack.Backward, lapack.ColumnWise, m-k+i+ib, ib,
|
||
a[n-k+i:], lda, tau[i:], work, ldwork)
|
||
|
||
// Apply H to A[0:m-k+i+ib, 0:n-k+i] from the left.
|
||
impl.Dlarfb(blas.Left, blas.NoTrans, lapack.Backward, lapack.ColumnWise,
|
||
m-k+i+ib, n-k+i, ib, a[n-k+i:], lda, work, ldwork,
|
||
a, lda, work[ib*ldwork:], ldwork)
|
||
}
|
||
|
||
// Apply H to rows 0:m-k+i+ib of current block.
|
||
impl.Dorg2l(m-k+i+ib, ib, ib, a[n-k+i:], lda, tau[i:], work)
|
||
|
||
// Set rows m-k+i+ib:m of current block to zero.
|
||
for j := n - k + i; j < n-k+i+ib; j++ {
|
||
for l := m - k + i + ib; l < m; l++ {
|
||
a[l*lda+j] = 0
|
||
}
|
||
}
|
||
}
|
||
}
|
||
work[0] = float64(iws)
|
||
}
|