mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00
2983 lines
102 KiB
Go
2983 lines
102 KiB
Go
// Copyright ©2015 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
// Package cgo provides an interface to bindings for a C LAPACK library.
|
||
package cgo // import "gonum.org/v1/gonum/lapack/cgo"
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/lapack"
|
||
"gonum.org/v1/gonum/lapack/cgo/lapacke"
|
||
)
|
||
|
||
// Copied from lapack/native. Keep in sync.
|
||
const (
|
||
absIncNotOne = "lapack: increment not one or negative one"
|
||
badAlpha = "lapack: bad alpha length"
|
||
badAuxv = "lapack: auxv has insufficient length"
|
||
badBeta = "lapack: bad beta length"
|
||
badD = "lapack: d has insufficient length"
|
||
badDecompUpdate = "lapack: bad decomp update"
|
||
badDiag = "lapack: bad diag"
|
||
badDims = "lapack: bad input dimensions"
|
||
badDirect = "lapack: bad direct"
|
||
badE = "lapack: e has insufficient length"
|
||
badEVComp = "lapack: bad EVComp"
|
||
badEVJob = "lapack: bad EVJob"
|
||
badEVSide = "lapack: bad EVSide"
|
||
badGSVDJob = "lapack: bad GSVDJob"
|
||
badHowMany = "lapack: bad HowMany"
|
||
badIlo = "lapack: ilo out of range"
|
||
badIhi = "lapack: ihi out of range"
|
||
badIpiv = "lapack: bad permutation length"
|
||
badJob = "lapack: bad Job"
|
||
badK1 = "lapack: k1 out of range"
|
||
badK2 = "lapack: k2 out of range"
|
||
badKperm = "lapack: incorrect permutation length"
|
||
badLdA = "lapack: index of a out of range"
|
||
badNb = "lapack: nb out of range"
|
||
badNorm = "lapack: bad norm"
|
||
badPivot = "lapack: bad pivot"
|
||
badS = "lapack: s has insufficient length"
|
||
badShifts = "lapack: bad shifts"
|
||
badSide = "lapack: bad side"
|
||
badSlice = "lapack: bad input slice length"
|
||
badSort = "lapack: bad Sort"
|
||
badStore = "lapack: bad store"
|
||
badTau = "lapack: tau has insufficient length"
|
||
badTauQ = "lapack: tauQ has insufficient length"
|
||
badTauP = "lapack: tauP has insufficient length"
|
||
badTrans = "lapack: bad trans"
|
||
badVn1 = "lapack: vn1 has insufficient length"
|
||
badVn2 = "lapack: vn2 has insufficient length"
|
||
badUplo = "lapack: illegal triangle"
|
||
badWork = "lapack: insufficient working memory"
|
||
badWorkStride = "lapack: insufficient working array stride"
|
||
badZ = "lapack: insufficient z length"
|
||
kGTM = "lapack: k > m"
|
||
kGTN = "lapack: k > n"
|
||
kLT0 = "lapack: k < 0"
|
||
mLT0 = "lapack: m < 0"
|
||
mLTN = "lapack: m < n"
|
||
nanScale = "lapack: NaN scale factor"
|
||
negDimension = "lapack: negative matrix dimension"
|
||
negZ = "lapack: negative z value"
|
||
nLT0 = "lapack: n < 0"
|
||
nLTM = "lapack: n < m"
|
||
offsetGTM = "lapack: offset > m"
|
||
shortWork = "lapack: working array shorter than declared"
|
||
zeroDiv = "lapack: zero divisor"
|
||
)
|
||
|
||
func min(m, n int) int {
|
||
if m < n {
|
||
return m
|
||
}
|
||
return n
|
||
}
|
||
|
||
func max(m, n int) int {
|
||
if m < n {
|
||
return n
|
||
}
|
||
return m
|
||
}
|
||
|
||
// checkMatrix verifies the parameters of a matrix input.
|
||
// Copied from lapack/native. Keep in sync.
|
||
func checkMatrix(m, n int, a []float64, lda int) {
|
||
if m < 0 {
|
||
panic("lapack: has negative number of rows")
|
||
}
|
||
if n < 0 {
|
||
panic("lapack: has negative number of columns")
|
||
}
|
||
if lda < n {
|
||
panic("lapack: stride less than number of columns")
|
||
}
|
||
if len(a) < (m-1)*lda+n {
|
||
panic("lapack: insufficient matrix slice length")
|
||
}
|
||
}
|
||
|
||
// checkVector verifies the parameters of a vector input.
|
||
// Copied from lapack/native. Keep in sync.
|
||
func checkVector(n int, v []float64, inc int) {
|
||
if n < 0 {
|
||
panic("lapack: negative vector length")
|
||
}
|
||
if (inc > 0 && (n-1)*inc >= len(v)) || (inc < 0 && (1-n)*inc >= len(v)) {
|
||
panic("lapack: insufficient vector slice length")
|
||
}
|
||
}
|
||
|
||
// Implementation is the cgo-based C implementation of LAPACK routines.
|
||
type Implementation struct{}
|
||
|
||
var _ lapack.Float64 = Implementation{}
|
||
|
||
// Dgeqp3 computes a QR factorization with column pivoting of the
|
||
// m×n matrix A: A*P = Q*R using Level 3 BLAS.
|
||
//
|
||
// The matrix Q is represented as a product of elementary reflectors
|
||
// Q = H_0 H_1 . . . H_{k-1}, where k = min(m,n).
|
||
// Each H_i has the form
|
||
// H_i = I - tau * v * v^T
|
||
// where tau and v are real vectors with v[0:i-1] = 0 and v[i] = 1;
|
||
// v[i:m] is stored on exit in A[i:m, i], and tau in tau[i].
|
||
//
|
||
// jpvt specifies a column pivot to be applied to A. If
|
||
// jpvt[j] is at least zero, the jth column of A is permuted
|
||
// to the front of A*P (a leading column), if jpvt[j] is -1
|
||
// the jth column of A is a free column. If jpvt[j] < -1, Dgeqp3
|
||
// will panic. On return, jpvt holds the permutation that was
|
||
// applied; the jth column of A*P was the jpvt[j] column of A.
|
||
// jpvt must have length n or Dgeqp3 will panic.
|
||
//
|
||
// tau holds the scalar factors of the elementary reflectors.
|
||
// It must have length min(m, n), otherwise Dgeqp3 will panic.
|
||
//
|
||
// work must have length at least max(1,lwork), and lwork must be at least
|
||
// 3*n+1, otherwise Dgeqp3 will panic. For optimal performance lwork must
|
||
// be at least 2*n+(n+1)*nb, where nb is the optimal blocksize. On return,
|
||
// work[0] will contain the optimal value of lwork.
|
||
//
|
||
// If lwork == -1, instead of performing Dgeqp3, only the optimal value of lwork
|
||
// will be stored in work[0].
|
||
//
|
||
// Dgeqp3 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int) {
|
||
checkMatrix(m, n, a, lda)
|
||
if len(jpvt) != n {
|
||
panic(badIpiv)
|
||
}
|
||
if len(tau) != min(m, n) {
|
||
panic(badTau)
|
||
}
|
||
if len(work) < max(1, lwork) {
|
||
panic(badWork)
|
||
}
|
||
|
||
// Don't update jpvt if querying lwkopt.
|
||
if lwork == -1 {
|
||
lapacke.Dgeqp3(m, n, a, lda, nil, nil, work, -1)
|
||
return
|
||
}
|
||
|
||
jpvt32 := make([]int32, len(jpvt))
|
||
for i, v := range jpvt {
|
||
v++
|
||
if v != int(int32(v)) || v < 0 || n < v {
|
||
panic("lapack: jpvt element out of range")
|
||
}
|
||
jpvt32[i] = int32(v)
|
||
}
|
||
|
||
lapacke.Dgeqp3(m, n, a, lda, jpvt32, tau, work, lwork)
|
||
|
||
for i, v := range jpvt32 {
|
||
jpvt[i] = int(v - 1)
|
||
}
|
||
}
|
||
|
||
// Dgerqf computes an RQ factorization of the m×n matrix A,
|
||
// A = R * Q.
|
||
// On exit, if m <= n, the upper triangle of the subarray
|
||
// A[0:m, n-m:n] contains the m×m upper triangular matrix R.
|
||
// If m >= n, the elements on and above the (m-n)-th subdiagonal
|
||
// contain the m×n upper trapezoidal matrix R.
|
||
// The remaining elements, with tau, represent the
|
||
// orthogonal matrix Q as a product of min(m,n) elementary
|
||
// reflectors.
|
||
//
|
||
// The matrix Q is represented as a product of elementary reflectors
|
||
// Q = H_0 H_1 . . . H_{min(m,n)-1}.
|
||
// Each H(i) has the form
|
||
// H_i = I - tau_i * v * v^T
|
||
// where v is a vector with v[0:n-k+i-1] stored in A[m-k+i, 0:n-k+i-1],
|
||
// v[n-k+i:n] = 0 and v[n-k+i] = 1.
|
||
//
|
||
// tau must have length min(m,n), work must have length max(1, lwork),
|
||
// and lwork must be -1 or at least max(1, m), otherwise Dgerqf will panic.
|
||
// On exit, work[0] will contain the optimal length for work.
|
||
//
|
||
// Dgerqf is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgerqf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
checkMatrix(m, n, a, lda)
|
||
|
||
if len(work) < max(1, lwork) {
|
||
panic(shortWork)
|
||
}
|
||
if lwork != -1 && lwork < max(1, m) {
|
||
panic(badWork)
|
||
}
|
||
|
||
k := min(m, n)
|
||
if len(tau) != k {
|
||
panic(badTau)
|
||
}
|
||
|
||
lapacke.Dgerqf(m, n, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dlacn2 estimates the 1-norm of an n×n matrix A using sequential updates with
|
||
// matrix-vector products provided externally.
|
||
//
|
||
// Dlacn2 is called sequentially and it returns the value of est and kase to be
|
||
// used on the next call.
|
||
// On the initial call, kase must be 0.
|
||
// In between calls, x must be overwritten by
|
||
// A * X if kase was returned as 1,
|
||
// A^T * X if kase was returned as 2,
|
||
// and all other parameters must not be changed.
|
||
// On the final return, kase is returned as 0, v contains A*W where W is a
|
||
// vector, and est = norm(V)/norm(W) is a lower bound for 1-norm of A.
|
||
//
|
||
// v, x, and isgn must all have length n and n must be at least 1, otherwise
|
||
// Dlacn2 will panic. isave is used for temporary storage.
|
||
//
|
||
// Dlacn2 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlacn2(n int, v, x []float64, isgn []int, est float64, kase int, isave *[3]int) (float64, int) {
|
||
if n < 1 {
|
||
panic("lapack: non-positive n")
|
||
}
|
||
checkVector(n, x, 1)
|
||
checkVector(n, v, 1)
|
||
if len(isgn) < n {
|
||
panic("lapack: insufficient isgn length")
|
||
}
|
||
if isave[0] < 0 || isave[0] > 5 {
|
||
panic("lapack: bad isave value")
|
||
}
|
||
if isave[0] == 0 && kase != 0 {
|
||
panic("lapack: bad isave value")
|
||
}
|
||
|
||
isgn32 := make([]int32, n)
|
||
for i, v := range isgn {
|
||
isgn32[i] = int32(v)
|
||
}
|
||
pest := []float64{est}
|
||
// Save one allocation by putting isave and kase into the same slice.
|
||
isavekase := []int32{int32(isave[0]), int32(isave[1]), int32(isave[2]), int32(kase)}
|
||
lapacke.Dlacn2(n, v, x, isgn32, pest, isavekase[3:], isavekase[:3])
|
||
for i, v := range isgn32 {
|
||
isgn[i] = int(v)
|
||
}
|
||
isave[0] = int(isavekase[0])
|
||
isave[1] = int(isavekase[1])
|
||
isave[2] = int(isavekase[2])
|
||
|
||
return pest[0], int(isavekase[3])
|
||
}
|
||
|
||
// Dlacpy copies the elements of A specified by uplo into B. Uplo can specify
|
||
// a triangular portion with blas.Upper or blas.Lower, or can specify all of the
|
||
// elemest with blas.All.
|
||
func (impl Implementation) Dlacpy(uplo blas.Uplo, m, n int, a []float64, lda int, b []float64, ldb int) {
|
||
checkMatrix(m, n, a, lda)
|
||
checkMatrix(m, n, b, ldb)
|
||
lapacke.Dlacpy(uplo, m, n, a, lda, b, ldb)
|
||
}
|
||
|
||
// Dlapmt rearranges the columns of the m×n matrix X as specified by the
|
||
// permutation k_0, k_1, ..., k_n-1 of the integers 0, ..., n-1.
|
||
//
|
||
// If forward is true a forward permutation is performed:
|
||
//
|
||
// X[0:m, k[j]] is moved to X[0:m, j] for j = 0, 1, ..., n-1.
|
||
//
|
||
// otherwise a backward permutation is performed:
|
||
//
|
||
// X[0:m, j] is moved to X[0:m, k[j]] for j = 0, 1, ..., n-1.
|
||
//
|
||
// k must have length n, otherwise Dlapmt will panic. k is zero-indexed.
|
||
func (impl Implementation) Dlapmt(forward bool, m, n int, x []float64, ldx int, k []int) {
|
||
checkMatrix(m, n, x, ldx)
|
||
if len(k) != n {
|
||
panic(badKperm)
|
||
}
|
||
|
||
if n <= 1 {
|
||
return
|
||
}
|
||
|
||
var forwrd int32
|
||
if forward {
|
||
forwrd = 1
|
||
}
|
||
k32 := make([]int32, len(k))
|
||
for i, v := range k {
|
||
v++ // Convert to 1-based indexing.
|
||
if v != int(int32(v)) {
|
||
panic("lapack: k element out of range")
|
||
}
|
||
k32[i] = int32(v)
|
||
}
|
||
|
||
lapacke.Dlapmt(forwrd, m, n, x, ldx, k32)
|
||
}
|
||
|
||
// Dlapy2 is the LAPACK version of math.Hypot.
|
||
//
|
||
// Dlapy2 is an internal routine. It is exported for testing purposes.
|
||
func (Implementation) Dlapy2(x, y float64) float64 {
|
||
return lapacke.Dlapy2(x, y)
|
||
}
|
||
|
||
// Dlarfb applies a block reflector to a matrix.
|
||
//
|
||
// In the call to Dlarfb, the mxn c is multiplied by the implicitly defined matrix h as follows:
|
||
// c = h * c if side == Left and trans == NoTrans
|
||
// c = c * h if side == Right and trans == NoTrans
|
||
// c = h^T * c if side == Left and trans == Trans
|
||
// c = c * h^T if side == Right and trans == Trans
|
||
// h is a product of elementary reflectors. direct sets the direction of multiplication
|
||
// h = h_1 * h_2 * ... * h_k if direct == Forward
|
||
// h = h_k * h_k-1 * ... * h_1 if direct == Backward
|
||
// The combination of direct and store defines the orientation of the elementary
|
||
// reflectors. In all cases the ones on the diagonal are implicitly represented.
|
||
//
|
||
// If direct == lapack.Forward and store == lapack.ColumnWise
|
||
// V = [ 1 ]
|
||
// [v1 1 ]
|
||
// [v1 v2 1]
|
||
// [v1 v2 v3]
|
||
// [v1 v2 v3]
|
||
// If direct == lapack.Forward and store == lapack.RowWise
|
||
// V = [ 1 v1 v1 v1 v1]
|
||
// [ 1 v2 v2 v2]
|
||
// [ 1 v3 v3]
|
||
// If direct == lapack.Backward and store == lapack.ColumnWise
|
||
// V = [v1 v2 v3]
|
||
// [v1 v2 v3]
|
||
// [ 1 v2 v3]
|
||
// [ 1 v3]
|
||
// [ 1]
|
||
// If direct == lapack.Backward and store == lapack.RowWise
|
||
// V = [v1 v1 1 ]
|
||
// [v2 v2 v2 1 ]
|
||
// [v3 v3 v3 v3 1]
|
||
// An elementary reflector can be explicitly constructed by extracting the
|
||
// corresponding elements of v, placing a 1 where the diagonal would be, and
|
||
// placing zeros in the remaining elements.
|
||
//
|
||
// t is a k×k matrix containing the block reflector, and this function will panic
|
||
// if t is not of sufficient size. See Dlarft for more information.
|
||
//
|
||
// work is a temporary storage matrix with stride ldwork.
|
||
// work must be of size at least n×k side == Left and m×k if side == Right, and
|
||
// this function will panic if this size is not met.
|
||
//
|
||
// Dlarfb is an internal routine. It is exported for testing purposes.
|
||
func (Implementation) Dlarfb(side blas.Side, trans blas.Transpose, direct lapack.Direct, store lapack.StoreV, m, n, k int, v []float64, ldv int, t []float64, ldt int, c []float64, ldc int, work []float64, ldwork int) {
|
||
if side != blas.Left && side != blas.Right {
|
||
panic(badSide)
|
||
}
|
||
if trans != blas.Trans && trans != blas.NoTrans {
|
||
panic(badTrans)
|
||
}
|
||
if direct != lapack.Forward && direct != lapack.Backward {
|
||
panic(badDirect)
|
||
}
|
||
if store != lapack.ColumnWise && store != lapack.RowWise {
|
||
panic(badStore)
|
||
}
|
||
checkMatrix(m, n, c, ldc)
|
||
if k < 0 {
|
||
panic(kLT0)
|
||
}
|
||
checkMatrix(k, k, t, ldt)
|
||
nv := m
|
||
nw := n
|
||
if side == blas.Right {
|
||
nv = n
|
||
nw = m
|
||
}
|
||
if store == lapack.ColumnWise {
|
||
checkMatrix(nv, k, v, ldv)
|
||
} else {
|
||
checkMatrix(k, nv, v, ldv)
|
||
}
|
||
// TODO(vladimir-ch): Replace the following two lines with
|
||
// checkMatrix(nw, k, work, ldwork)
|
||
// if and when the issue
|
||
// https://github.com/Reference-LAPACK/lapack/issues/37
|
||
// has been resolved.
|
||
ldwork = nw
|
||
work = make([]float64, ldwork*k)
|
||
|
||
lapacke.Dlarfb(side, trans, byte(direct), byte(store), m, n, k, v, ldv, t, ldt, c, ldc, work, ldwork)
|
||
}
|
||
|
||
// Dlarfg generates an elementary reflector for a Householder matrix. It creates
|
||
// a real elementary reflector of order n such that
|
||
// H * (alpha) = (beta)
|
||
// ( x) ( 0)
|
||
// H^T * H = I
|
||
// H is represented in the form
|
||
// H = 1 - tau * (1; v) * (1 v^T)
|
||
// where tau is a real scalar.
|
||
//
|
||
// On entry, x contains the vector x, on exit it contains v.
|
||
//
|
||
// Dlarfg is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlarfg(n int, alpha float64, x []float64, incX int) (beta, tau float64) {
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if n <= 1 {
|
||
return alpha, 0
|
||
}
|
||
checkVector(n-1, x, incX)
|
||
_alpha := []float64{alpha}
|
||
_tau := []float64{0}
|
||
lapacke.Dlarfg(n, _alpha, x, incX, _tau)
|
||
return _alpha[0], _tau[0]
|
||
}
|
||
|
||
// Dlarft forms the triangular factor T of a block reflector H, storing the answer
|
||
// in t.
|
||
// H = I - V * T * V^T if store == lapack.ColumnWise
|
||
// H = I - V^T * T * V if store == lapack.RowWise
|
||
// H is defined by a product of the elementary reflectors where
|
||
// H = H_0 * H_1 * ... * H_{k-1} if direct == lapack.Forward
|
||
// H = H_{k-1} * ... * H_1 * H_0 if direct == lapack.Backward
|
||
//
|
||
// t is a k×k triangular matrix. t is upper triangular if direct = lapack.Forward
|
||
// and lower triangular otherwise. This function will panic if t is not of
|
||
// sufficient size.
|
||
//
|
||
// store describes the storage of the elementary reflectors in v. Please see
|
||
// Dlarfb for a description of layout.
|
||
//
|
||
// tau contains the scalar factors of the elementary reflectors H_i.
|
||
//
|
||
// Dlarft is an internal routine. It is exported for testing purposes.
|
||
func (Implementation) Dlarft(direct lapack.Direct, store lapack.StoreV, n, k int,
|
||
v []float64, ldv int, tau []float64, t []float64, ldt int) {
|
||
if n == 0 {
|
||
return
|
||
}
|
||
if n < 0 || k < 0 {
|
||
panic(negDimension)
|
||
}
|
||
if direct != lapack.Forward && direct != lapack.Backward {
|
||
panic(badDirect)
|
||
}
|
||
if store != lapack.RowWise && store != lapack.ColumnWise {
|
||
panic(badStore)
|
||
}
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
checkMatrix(k, k, t, ldt)
|
||
|
||
lapacke.Dlarft(byte(direct), byte(store), n, k, v, ldv, tau, t, ldt)
|
||
}
|
||
|
||
// Dlange computes the matrix norm of the general m×n matrix a. The input norm
|
||
// specifies the norm computed.
|
||
// lapack.MaxAbs: the maximum absolute value of an element.
|
||
// lapack.MaxColumnSum: the maximum column sum of the absolute values of the entries.
|
||
// lapack.MaxRowSum: the maximum row sum of the absolute values of the entries.
|
||
// lapack.NormFrob: the square root of the sum of the squares of the entries.
|
||
// If norm == lapack.MaxColumnSum, work must be of length n, and this function will panic otherwise.
|
||
// There are no restrictions on work for the other matrix norms.
|
||
func (impl Implementation) Dlange(norm lapack.MatrixNorm, m, n int, a []float64, lda int, work []float64) float64 {
|
||
checkMatrix(m, n, a, lda)
|
||
switch norm {
|
||
case lapack.MaxRowSum, lapack.MaxColumnSum, lapack.NormFrob, lapack.MaxAbs:
|
||
default:
|
||
panic(badNorm)
|
||
}
|
||
if norm == lapack.MaxColumnSum && len(work) < n {
|
||
panic(badWork)
|
||
}
|
||
return lapacke.Dlange(byte(norm), m, n, a, lda, work)
|
||
}
|
||
|
||
// Dlansy computes the specified norm of an n×n symmetric matrix. If
|
||
// norm == lapack.MaxColumnSum or norm == lapackMaxRowSum work must have length
|
||
// at least n, otherwise work is unused.
|
||
func (impl Implementation) Dlansy(norm lapack.MatrixNorm, uplo blas.Uplo, n int, a []float64, lda int, work []float64) float64 {
|
||
checkMatrix(n, n, a, lda)
|
||
switch norm {
|
||
case lapack.MaxRowSum, lapack.MaxColumnSum, lapack.NormFrob, lapack.MaxAbs:
|
||
default:
|
||
panic(badNorm)
|
||
}
|
||
if (norm == lapack.MaxColumnSum || norm == lapack.MaxRowSum) && len(work) < n {
|
||
panic(badWork)
|
||
}
|
||
if uplo != blas.Upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
return lapacke.Dlansy(byte(norm), uplo, n, a, lda, work)
|
||
}
|
||
|
||
// Dlantr computes the specified norm of an m×n trapezoidal matrix A. If
|
||
// norm == lapack.MaxColumnSum work must have length at least n, otherwise work
|
||
// is unused.
|
||
func (impl Implementation) Dlantr(norm lapack.MatrixNorm, uplo blas.Uplo, diag blas.Diag, m, n int, a []float64, lda int, work []float64) float64 {
|
||
checkMatrix(m, n, a, lda)
|
||
switch norm {
|
||
case lapack.MaxRowSum, lapack.MaxColumnSum, lapack.NormFrob, lapack.MaxAbs:
|
||
default:
|
||
panic(badNorm)
|
||
}
|
||
if uplo != blas.Upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
if diag != blas.Unit && diag != blas.NonUnit {
|
||
panic(badDiag)
|
||
}
|
||
if norm == lapack.MaxColumnSum && len(work) < n {
|
||
panic(badWork)
|
||
}
|
||
return lapacke.Dlantr(byte(norm), uplo, diag, m, n, a, lda, work)
|
||
}
|
||
|
||
// Dlarfx applies an elementary reflector H to a real m×n matrix C, from either
|
||
// the left or the right, with loop unrolling when the reflector has order less
|
||
// than 11.
|
||
//
|
||
// H is represented in the form
|
||
// H = I - tau * v * v^T,
|
||
// where tau is a real scalar and v is a real vector. If tau = 0, then H is
|
||
// taken to be the identity matrix.
|
||
//
|
||
// v must have length equal to m if side == blas.Left, and equal to n if side ==
|
||
// blas.Right, otherwise Dlarfx will panic.
|
||
//
|
||
// c and ldc represent the m×n matrix C. On return, C is overwritten by the
|
||
// matrix H * C if side == blas.Left, or C * H if side == blas.Right.
|
||
//
|
||
// work must have length at least n if side == blas.Left, and at least m if side
|
||
// == blas.Right, otherwise Dlarfx will panic. work is not referenced if H has
|
||
// order < 11.
|
||
func (impl Implementation) Dlarfx(side blas.Side, m, n int, v []float64, tau float64, c []float64, ldc int, work []float64) {
|
||
checkMatrix(m, n, c, ldc)
|
||
switch side {
|
||
case blas.Left:
|
||
checkVector(m, v, 1)
|
||
if len(work) < n && m > 10 {
|
||
panic(badWork)
|
||
}
|
||
case blas.Right:
|
||
checkVector(n, v, 1)
|
||
if len(work) < m && n > 10 {
|
||
panic(badWork)
|
||
}
|
||
default:
|
||
panic(badSide)
|
||
}
|
||
|
||
lapacke.Dlarfx(side, m, n, v, tau, c, ldc, work)
|
||
}
|
||
|
||
// Dlascl multiplies an m×n matrix by the scalar cto/cfrom.
|
||
//
|
||
// cfrom must not be zero, and cto and cfrom must not be NaN, otherwise Dlascl
|
||
// will panic.
|
||
//
|
||
// Dlascl is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlascl(kind lapack.MatrixType, kl, ku int, cfrom, cto float64, m, n int, a []float64, lda int) {
|
||
checkMatrix(m, n, a, lda)
|
||
if cfrom == 0 {
|
||
panic(zeroDiv)
|
||
}
|
||
if math.IsNaN(cfrom) || math.IsNaN(cto) {
|
||
panic(nanScale)
|
||
}
|
||
lapacke.Dlascl(byte(kind), kl, ku, cfrom, cto, m, n, a, lda)
|
||
}
|
||
|
||
// Dlaset sets the off-diagonal elements of A to alpha, and the diagonal
|
||
// elements to beta. If uplo == blas.Upper, only the elements in the upper
|
||
// triangular part are set. If uplo == blas.Lower, only the elements in the
|
||
// lower triangular part are set. If uplo is otherwise, all of the elements of A
|
||
// are set.
|
||
//
|
||
// Dlaset is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlaset(uplo blas.Uplo, m, n int, alpha, beta float64, a []float64, lda int) {
|
||
checkMatrix(m, n, a, lda)
|
||
lapacke.Dlaset(uplo, m, n, alpha, beta, a, lda)
|
||
}
|
||
|
||
// Dlasrt sorts the numbers in the input slice d. If s == lapack.SortIncreasing,
|
||
// the elements are sorted in increasing order. If s == lapack.SortDecreasing,
|
||
// the elements are sorted in decreasing order. For other values of s Dlasrt
|
||
// will panic.
|
||
//
|
||
// Dlasrt is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlasrt(s lapack.Sort, n int, d []float64) {
|
||
checkVector(n, d, 1)
|
||
switch s {
|
||
default:
|
||
panic(badSort)
|
||
case lapack.SortIncreasing, lapack.SortDecreasing:
|
||
}
|
||
lapacke.Dlasrt(byte(s), n, d[:n])
|
||
}
|
||
|
||
// Dlaswp swaps the rows k1 to k2 of a rectangular matrix A according to the
|
||
// indices in ipiv so that row k is swapped with ipiv[k].
|
||
//
|
||
// n is the number of columns of A and incX is the increment for ipiv. If incX
|
||
// is 1, the swaps are applied from k1 to k2. If incX is -1, the swaps are
|
||
// applied in reverse order from k2 to k1. For other values of incX Dlaswp will
|
||
// panic. ipiv must have length k2+1, otherwise Dlaswp will panic.
|
||
//
|
||
// The indices k1, k2, and the elements of ipiv are zero-based.
|
||
//
|
||
// Dlaswp is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dlaswp(n int, a []float64, lda, k1, k2 int, ipiv []int, incX int) {
|
||
switch {
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case k2 < 0:
|
||
panic(badK2)
|
||
case k1 < 0 || k2 < k1:
|
||
panic(badK1)
|
||
case len(ipiv) != k2+1:
|
||
panic(badIpiv)
|
||
case incX != 1 && incX != -1:
|
||
panic(absIncNotOne)
|
||
}
|
||
|
||
ipiv32 := make([]int32, len(ipiv))
|
||
for i, v := range ipiv {
|
||
ipiv32[i] = int32(v + 1)
|
||
}
|
||
lapacke.Dlaswp(n, a, lda, k1+1, k2+1, ipiv32, incX)
|
||
}
|
||
|
||
// Dpotrf computes the Cholesky decomposition of the symmetric positive definite
|
||
// matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix,
|
||
// and a = U U^T is stored in place into a. If ul == blas.Lower, then a = L L^T
|
||
// is computed and stored in-place into a. If a is not positive definite, false
|
||
// is returned. This is the blocked version of the algorithm.
|
||
func (impl Implementation) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool) {
|
||
// ul is checked in lapacke.Dpotrf.
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if lda < n {
|
||
panic(badLdA)
|
||
}
|
||
if n == 0 {
|
||
return true
|
||
}
|
||
return lapacke.Dpotrf(ul, n, a, lda)
|
||
}
|
||
|
||
// Dgebal balances an n×n matrix A. Balancing consists of two stages, permuting
|
||
// and scaling. Both steps are optional and depend on the value of job.
|
||
//
|
||
// Permuting consists of applying a permutation matrix P such that the matrix
|
||
// that results from P^T*A*P takes the upper block triangular form
|
||
// [ T1 X Y ]
|
||
// P^T A P = [ 0 B Z ],
|
||
// [ 0 0 T2 ]
|
||
// where T1 and T2 are upper triangular matrices and B contains at least one
|
||
// nonzero off-diagonal element in each row and column. The indices ilo and ihi
|
||
// mark the starting and ending columns of the submatrix B. The eigenvalues of A
|
||
// isolated in the first 0 to ilo-1 and last ihi+1 to n-1 elements on the
|
||
// diagonal can be read off without any roundoff error.
|
||
//
|
||
// Scaling consists of applying a diagonal similarity transformation D such that
|
||
// D^{-1}*B*D has the 1-norm of each row and its corresponding column nearly
|
||
// equal. The output matrix is
|
||
// [ T1 X*D Y ]
|
||
// [ 0 inv(D)*B*D inv(D)*Z ].
|
||
// [ 0 0 T2 ]
|
||
// Scaling may reduce the 1-norm of the matrix, and improve the accuracy of
|
||
// the computed eigenvalues and/or eigenvectors.
|
||
//
|
||
// job specifies the operations that will be performed on A.
|
||
// If job is lapack.None, Dgebal sets scale[i] = 1 for all i and returns ilo=0, ihi=n-1.
|
||
// If job is lapack.Permute, only permuting will be done.
|
||
// If job is lapack.Scale, only scaling will be done.
|
||
// If job is lapack.PermuteScale, both permuting and scaling will be done.
|
||
//
|
||
// On return, if job is lapack.Permute or lapack.PermuteScale, it will hold that
|
||
// A[i,j] == 0, for i > j and j ∈ {0, ..., ilo-1, ihi+1, ..., n-1}.
|
||
// If job is lapack.None or lapack.Scale, or if n == 0, it will hold that
|
||
// ilo == 0 and ihi == n-1.
|
||
//
|
||
// On return, scale will contain information about the permutations and scaling
|
||
// factors applied to A. If π(j) denotes the index of the column interchanged
|
||
// with column j, and D[j,j] denotes the scaling factor applied to column j,
|
||
// then
|
||
// scale[j] == π(j), for j ∈ {0, ..., ilo-1, ihi+1, ..., n-1},
|
||
// == D[j,j], for j ∈ {ilo, ..., ihi}.
|
||
// scale must have length equal to n, otherwise Dgebal will panic.
|
||
//
|
||
// Dgebal is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgebal(job lapack.Job, n int, a []float64, lda int, scale []float64) (ilo, ihi int) {
|
||
switch job {
|
||
default:
|
||
panic(badJob)
|
||
case lapack.None, lapack.Permute, lapack.Scale, lapack.PermuteScale:
|
||
}
|
||
checkMatrix(n, n, a, lda)
|
||
if len(scale) != n {
|
||
panic("lapack: bad length of scale")
|
||
}
|
||
|
||
ilo32 := make([]int32, 1)
|
||
ihi32 := make([]int32, 1)
|
||
lapacke.Dgebal(job, n, a, lda, ilo32, ihi32, scale)
|
||
ilo = int(ilo32[0]) - 1
|
||
ihi = int(ihi32[0]) - 1
|
||
for j := 0; j < ilo; j++ {
|
||
scale[j]--
|
||
}
|
||
for j := ihi + 1; j < n; j++ {
|
||
scale[j]--
|
||
}
|
||
return ilo, ihi
|
||
}
|
||
|
||
// Dgebak transforms an n×m matrix V as
|
||
// V = P D V, if side == blas.Right,
|
||
// V = P D^{-1} V, if side == blas.Left,
|
||
// where P and D are n×n permutation and scaling matrices, respectively,
|
||
// implicitly represented by job, scale, ilo and ihi as returned by Dgebal.
|
||
//
|
||
// Typically, columns of the matrix V contain the right or left (determined by
|
||
// side) eigenvectors of the balanced matrix output by Dgebal, and Dgebak forms
|
||
// the eigenvectors of the original matrix.
|
||
//
|
||
// Dgebak is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgebak(job lapack.Job, side lapack.EVSide, n, ilo, ihi int, scale []float64, m int, v []float64, ldv int) {
|
||
switch job {
|
||
default:
|
||
panic(badJob)
|
||
case lapack.None, lapack.Permute, lapack.Scale, lapack.PermuteScale:
|
||
}
|
||
var bside blas.Side
|
||
switch side {
|
||
default:
|
||
panic(badSide)
|
||
case lapack.LeftEV:
|
||
bside = blas.Left
|
||
case lapack.RightEV:
|
||
bside = blas.Right
|
||
}
|
||
checkMatrix(n, m, v, ldv)
|
||
switch {
|
||
case ilo < 0 || max(0, n-1) < ilo:
|
||
panic(badIlo)
|
||
case ihi < min(ilo, n-1) || n <= ihi:
|
||
panic(badIhi)
|
||
}
|
||
|
||
// Convert permutation indices to 1-based.
|
||
for j := 0; j < ilo; j++ {
|
||
scale[j]++
|
||
}
|
||
for j := ihi + 1; j < n; j++ {
|
||
scale[j]++
|
||
}
|
||
lapacke.Dgebak(job, bside, n, ilo+1, ihi+1, scale, m, v, ldv)
|
||
// Convert permutation indices back to 0-based.
|
||
for j := 0; j < ilo; j++ {
|
||
scale[j]--
|
||
}
|
||
for j := ihi + 1; j < n; j++ {
|
||
scale[j]--
|
||
}
|
||
}
|
||
|
||
// Dbdsqr performs a singular value decomposition of a real n×n bidiagonal matrix.
|
||
//
|
||
// The SVD of the bidiagonal matrix B is
|
||
// B = Q * S * P^T
|
||
// where S is a diagonal matrix of singular values, Q is an orthogonal matrix of
|
||
// left singular vectors, and P is an orthogonal matrix of right singular vectors.
|
||
//
|
||
// Q and P are only computed if requested. If left singular vectors are requested,
|
||
// this routine returns U * Q instead of Q, and if right singular vectors are
|
||
// requested P^T * VT is returned instead of P^T.
|
||
//
|
||
// Frequently Dbdsqr is used in conjunction with Dgebrd which reduces a general
|
||
// matrix A into bidiagonal form. In this case, the SVD of A is
|
||
// A = (U * Q) * S * (P^T * VT)
|
||
//
|
||
// This routine may also compute Q^T * C.
|
||
//
|
||
// d and e contain the elements of the bidiagonal matrix b. d must have length at
|
||
// least n, and e must have length at least n-1. Dbdsqr will panic if there is
|
||
// insufficient length. On exit, D contains the singular values of B in decreasing
|
||
// order.
|
||
//
|
||
// VT is a matrix of size n×ncvt whose elements are stored in vt. The elements
|
||
// of vt are modified to contain P^T * VT on exit. VT is not used if ncvt == 0.
|
||
//
|
||
// U is a matrix of size nru×n whose elements are stored in u. The elements
|
||
// of u are modified to contain U * Q on exit. U is not used if nru == 0.
|
||
//
|
||
// C is a matrix of size n×ncc whose elements are stored in c. The elements
|
||
// of c are modified to contain Q^T * C on exit. C is not used if ncc == 0.
|
||
//
|
||
// work contains temporary storage and must have length at least 4*n. Dbdsqr
|
||
// will panic if there is insufficient working memory.
|
||
//
|
||
// Dbdsqr returns whether the decomposition was successful.
|
||
func (impl Implementation) Dbdsqr(uplo blas.Uplo, n, ncvt, nru, ncc int, d, e, vt []float64, ldvt int, u []float64, ldu int, c []float64, ldc int, work []float64) (ok bool) {
|
||
if uplo != blas.Upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
if ncvt != 0 {
|
||
checkMatrix(n, ncvt, vt, ldvt)
|
||
}
|
||
if nru != 0 {
|
||
checkMatrix(nru, n, u, ldu)
|
||
}
|
||
if ncc != 0 {
|
||
checkMatrix(n, ncc, c, ldc)
|
||
}
|
||
if len(d) < n {
|
||
panic(badD)
|
||
}
|
||
if len(e) < n-1 {
|
||
panic(badE)
|
||
}
|
||
if len(work) < 4*n {
|
||
panic(badWork)
|
||
}
|
||
// An address must be passed to cgo. If lengths are zero, allocate a slice.
|
||
if len(vt) == 0 {
|
||
vt = make([]float64, 1)
|
||
}
|
||
if len(u) == 0 {
|
||
vt = make([]float64, 1)
|
||
}
|
||
if len(c) == 0 {
|
||
c = make([]float64, 1)
|
||
}
|
||
return lapacke.Dbdsqr(uplo, n, ncvt, nru, ncc, d, e, vt, ldvt, u, ldu, c, ldc, work)
|
||
}
|
||
|
||
// Dgebrd reduces a general m×n matrix A to upper or lower bidiagonal form B by
|
||
// an orthogonal transformation:
|
||
// Q^T * A * P = B.
|
||
// The diagonal elements of B are stored in d and the off-diagonal elements are
|
||
// stored in e. These are additionally stored along the diagonal of A and the
|
||
// off-diagonal of A. If m >= n B is an upper-bidiagonal matrix, and if m < n B
|
||
// is a lower-bidiagonal matrix.
|
||
//
|
||
// The remaining elements of A store the data needed to construct Q and P.
|
||
// The matrices Q and P are products of elementary reflectors
|
||
// if m >= n, Q = H_0 * H_1 * ... * H_{n-1},
|
||
// P = G_0 * G_1 * ... * G_{n-2},
|
||
// if m < n, Q = H_0 * H_1 * ... * H_{m-2},
|
||
// P = G_0 * G_1 * ... * G_{m-1},
|
||
// where
|
||
// H_i = I - tauQ[i] * v_i * v_i^T,
|
||
// G_i = I - tauP[i] * u_i * u_i^T.
|
||
//
|
||
// As an example, on exit the entries of A when m = 6, and n = 5
|
||
// [ d e u1 u1 u1]
|
||
// [v1 d e u2 u2]
|
||
// [v1 v2 d e u3]
|
||
// [v1 v2 v3 d e]
|
||
// [v1 v2 v3 v4 d]
|
||
// [v1 v2 v3 v4 v5]
|
||
// and when m = 5, n = 6
|
||
// [ d u1 u1 u1 u1 u1]
|
||
// [ e d u2 u2 u2 u2]
|
||
// [v1 e d u3 u3 u3]
|
||
// [v1 v2 e d u4 u4]
|
||
// [v1 v2 v3 e d u5]
|
||
//
|
||
// d, tauQ, and tauP must all have length at least min(m,n), and e must have
|
||
// length min(m,n) - 1, unless lwork is -1 when there is no check except for
|
||
// work which must have a length of at least one.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length.
|
||
// At minimum, lwork >= max(1,m,n) or be -1 and this function will panic otherwise.
|
||
// Dgebrd is blocked decomposition, but the block size is limited
|
||
// by the temporary space available. If lwork == -1, instead of performing Dgebrd,
|
||
// the optimal work length will be stored into work[0].
|
||
//
|
||
// Dgebrd is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgebrd(m, n int, a []float64, lda int, d, e, tauQ, tauP, work []float64, lwork int) {
|
||
checkMatrix(m, n, a, lda)
|
||
minmn := min(m, n)
|
||
if len(d) < minmn {
|
||
panic(badD)
|
||
}
|
||
if len(e) < minmn-1 {
|
||
panic(badE)
|
||
}
|
||
if len(tauQ) < minmn {
|
||
panic(badTauQ)
|
||
}
|
||
if len(tauP) < minmn {
|
||
panic(badTauP)
|
||
}
|
||
if lwork != -1 && lwork < max(1, max(m, n)) {
|
||
panic(badWork)
|
||
}
|
||
if len(work) < max(1, lwork) {
|
||
panic(badWork)
|
||
}
|
||
|
||
lapacke.Dgebrd(m, n, a, lda, d, e, tauQ, tauP, work, lwork)
|
||
}
|
||
|
||
// Dgecon estimates the reciprocal of the condition number of the n×n matrix A
|
||
// given the LU decomposition of the matrix. The condition number computed may
|
||
// be based on the 1-norm or the ∞-norm.
|
||
//
|
||
// The slice a contains the result of the LU decomposition of A as computed by Dgetrf.
|
||
//
|
||
// anorm is the corresponding 1-norm or ∞-norm of the original matrix A.
|
||
//
|
||
// work is a temporary data slice of length at least 4*n and Dgecon will panic otherwise.
|
||
//
|
||
// iwork is a temporary data slice of length at least n and Dgecon will panic otherwise.
|
||
// Elements of iwork must fit within the int32 type or Dgecon will panic.
|
||
func (impl Implementation) Dgecon(norm lapack.MatrixNorm, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 {
|
||
checkMatrix(n, n, a, lda)
|
||
if norm != lapack.MaxColumnSum && norm != lapack.MaxRowSum {
|
||
panic("bad norm")
|
||
}
|
||
if len(work) < 4*n {
|
||
panic(badWork)
|
||
}
|
||
if len(iwork) < n {
|
||
panic(badWork)
|
||
}
|
||
rcond := make([]float64, 1)
|
||
_iwork := make([]int32, len(iwork))
|
||
for i, v := range iwork {
|
||
if v != int(int32(v)) {
|
||
panic("lapack: iwork element out of range")
|
||
}
|
||
_iwork[i] = int32(v)
|
||
}
|
||
lapacke.Dgecon(byte(norm), n, a, lda, anorm, rcond, work, _iwork)
|
||
for i, v := range _iwork {
|
||
iwork[i] = int(v)
|
||
}
|
||
return rcond[0]
|
||
}
|
||
|
||
// Dgelq2 computes the LQ factorization of the m×n matrix A.
|
||
//
|
||
// In an LQ factorization, L is a lower triangular m×n matrix, and Q is an n×n
|
||
// orthonormal matrix.
|
||
//
|
||
// a is modified to contain the information to construct L and Q.
|
||
// The lower triangle of a contains the matrix L. The upper triangular elements
|
||
// (not including the diagonal) contain the elementary reflectors. Tau is modified
|
||
// to contain the reflector scales. tau must have length of at least k = min(m,n)
|
||
// and this function will panic otherwise.
|
||
//
|
||
// See Dgeqr2 for a description of the elementary reflectors and orthonormal
|
||
// matrix Q. Q is constructed as a product of these elementary reflectors,
|
||
// Q = H_{k-1} * ... * H_1 * H_0,
|
||
// where k = min(m,n).
|
||
//
|
||
// Work is temporary storage of length at least m and this function will panic otherwise.
|
||
func (impl Implementation) Dgelq2(m, n int, a []float64, lda int, tau, work []float64) {
|
||
checkMatrix(m, n, a, lda)
|
||
if len(tau) < min(m, n) {
|
||
panic(badTau)
|
||
}
|
||
if len(work) < m {
|
||
panic(badWork)
|
||
}
|
||
lapacke.Dgelq2(m, n, a, lda, tau, work)
|
||
}
|
||
|
||
// Dgelqf computes the LQ factorization of the m×n matrix A using a blocked
|
||
// algorithm. See the documentation for Dgelq2 for a description of the
|
||
// parameters at entry and exit.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length.
|
||
// At minimum, lwork >= m, and this function will panic otherwise.
|
||
// Dgelqf is a blocked LQ factorization, but the block size is limited
|
||
// by the temporary space available. If lwork == -1, instead of performing Dgelqf,
|
||
// the optimal work length will be stored into work[0].
|
||
//
|
||
// tau must have length at least min(m,n), and this function will panic otherwise.
|
||
func (impl Implementation) Dgelqf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
if lwork == -1 {
|
||
work[0] = float64(m)
|
||
return
|
||
}
|
||
checkMatrix(m, n, a, lda)
|
||
if len(work) < lwork {
|
||
panic(shortWork)
|
||
}
|
||
if lwork < m {
|
||
panic(badWork)
|
||
}
|
||
if len(tau) < min(m, n) {
|
||
panic(badTau)
|
||
}
|
||
lapacke.Dgelqf(m, n, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dgeqr2 computes a QR factorization of the m×n matrix A.
|
||
//
|
||
// In a QR factorization, Q is an m×m orthonormal matrix, and R is an
|
||
// upper triangular m×n matrix.
|
||
//
|
||
// A is modified to contain the information to construct Q and R.
|
||
// The upper triangle of a contains the matrix R. The lower triangular elements
|
||
// (not including the diagonal) contain the elementary reflectors. Tau is modified
|
||
// to contain the reflector scales. tau must have length at least min(m,n), and
|
||
// this function will panic otherwise.
|
||
//
|
||
// The ith elementary reflector can be explicitly constructed by first extracting
|
||
// the
|
||
// v[j] = 0 j < i
|
||
// v[j] = 1 j == i
|
||
// v[j] = a[j*lda+i] j > i
|
||
// and computing H_i = I - tau[i] * v * v^T.
|
||
//
|
||
// The orthonormal matrix Q can be constucted from a product of these elementary
|
||
// reflectors, Q = H_0 * H_1 * ... * H_{k-1}, where k = min(m,n).
|
||
//
|
||
// Work is temporary storage of length at least n and this function will panic otherwise.
|
||
func (impl Implementation) Dgeqr2(m, n int, a []float64, lda int, tau, work []float64) {
|
||
checkMatrix(m, n, a, lda)
|
||
if len(work) < n {
|
||
panic(badWork)
|
||
}
|
||
k := min(m, n)
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
lapacke.Dgeqr2(m, n, a, lda, tau, work)
|
||
}
|
||
|
||
// Dgeqrf computes the QR factorization of the m×n matrix A using a blocked
|
||
// algorithm. See the documentation for Dgeqr2 for a description of the
|
||
// parameters at entry and exit.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length.
|
||
// The length of work must be at least max(1, lwork) and lwork must be -1
|
||
// or at least n, otherwise this function will panic.
|
||
// Dgeqrf is a blocked QR factorization, but the block size is limited
|
||
// by the temporary space available. If lwork == -1, instead of performing Dgeqrf,
|
||
// the optimal work length will be stored into work[0].
|
||
//
|
||
// tau must have length at least min(m,n), and this function will panic otherwise.
|
||
func (impl Implementation) Dgeqrf(m, n int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
if len(work) < max(1, lwork) {
|
||
panic(shortWork)
|
||
}
|
||
if lwork == -1 {
|
||
work[0] = float64(n)
|
||
return
|
||
}
|
||
checkMatrix(m, n, a, lda)
|
||
if lwork < n {
|
||
panic(badWork)
|
||
}
|
||
k := min(m, n)
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
lapacke.Dgeqrf(m, n, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dgehrd reduces a block of a real n×n general matrix A to upper Hessenberg
|
||
// form H by an orthogonal similarity transformation Q^T * A * Q = H.
|
||
//
|
||
// The matrix Q is represented as a product of (ihi-ilo) elementary
|
||
// reflectors
|
||
// Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
|
||
// Each H_i has the form
|
||
// H_i = I - tau[i] * v * v^T
|
||
// where v is a real vector with v[0:i+1] = 0, v[i+1] = 1 and v[ihi+1:n] = 0.
|
||
// v[i+2:ihi+1] is stored on exit in A[i+2:ihi+1,i].
|
||
//
|
||
// On entry, a contains the n×n general matrix to be reduced. On return, the
|
||
// upper triangle and the first subdiagonal of A will be overwritten with the
|
||
// upper Hessenberg matrix H, and the elements below the first subdiagonal, with
|
||
// the slice tau, represent the orthogonal matrix Q as a product of elementary
|
||
// reflectors.
|
||
//
|
||
// The contents of a are illustrated by the following example, with n = 7, ilo =
|
||
// 1 and ihi = 5.
|
||
// On entry,
|
||
// [ a a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a a a a a a ]
|
||
// [ a ]
|
||
// on return,
|
||
// [ a a h h h h a ]
|
||
// [ a h h h h a ]
|
||
// [ h h h h h h ]
|
||
// [ v1 h h h h h ]
|
||
// [ v1 v2 h h h h ]
|
||
// [ v1 v2 v3 h h h ]
|
||
// [ a ]
|
||
// where a denotes an element of the original matrix A, h denotes a
|
||
// modified element of the upper Hessenberg matrix H, and vi denotes an
|
||
// element of the vector defining H_i.
|
||
//
|
||
// ilo and ihi determine the block of A that will be reduced to upper Hessenberg
|
||
// form. It must hold that 0 <= ilo <= ihi < n if n > 0, and ilo == 0 and ihi ==
|
||
// -1 if n == 0, otherwise Dgehrd will panic.
|
||
//
|
||
// On return, tau will contain the scalar factors of the elementary reflectors.
|
||
// Elements tau[:ilo] and tau[ihi:] will be set to zero. tau must have length
|
||
// equal to n-1 if n > 0, otherwise Dgehrd will panic.
|
||
//
|
||
// work must have length at least lwork and lwork must be at least max(1,n),
|
||
// otherwise Dgehrd will panic. On return, work[0] contains the optimal value of
|
||
// lwork.
|
||
//
|
||
// If lwork == -1, instead of performing Dgehrd, only the optimal value of lwork
|
||
// will be stored in work[0].
|
||
//
|
||
// Dgehrd is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dgehrd(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
switch {
|
||
case ilo < 0 || max(0, n-1) < ilo:
|
||
panic(badIlo)
|
||
case ihi < min(ilo, n-1) || n <= ihi:
|
||
panic(badIhi)
|
||
case lwork < max(1, n) && lwork != -1:
|
||
panic(badWork)
|
||
case len(work) < lwork:
|
||
panic(shortWork)
|
||
}
|
||
if lwork != -1 {
|
||
checkMatrix(n, n, a, lda)
|
||
if len(tau) != n-1 && n > 0 {
|
||
panic(badTau)
|
||
}
|
||
}
|
||
lapacke.Dgehrd(n, ilo+1, ihi+1, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dgels finds a minimum-norm solution based on the matrices A and B using the
|
||
// QR or LQ factorization. Dgels returns false if the matrix
|
||
// A is singular, and true if this solution was successfully found.
|
||
//
|
||
// The minimization problem solved depends on the input parameters.
|
||
//
|
||
// 1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2
|
||
// is minimized.
|
||
// 2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of
|
||
// A * X = B.
|
||
// 3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of
|
||
// A^T * X = B.
|
||
// 4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2
|
||
// is minimized.
|
||
// Note that the least-squares solutions (cases 1 and 3) perform the minimization
|
||
// per column of B. This is not the same as finding the minimum-norm matrix.
|
||
//
|
||
// The matrix A is a general matrix of size m×n and is modified during this call.
|
||
// The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry,
|
||
// the elements of b specify the input matrix B. B has size m×nrhs if
|
||
// trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the
|
||
// leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans,
|
||
// this submatrix is of size n×nrhs, and of size m×nrhs otherwise.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length.
|
||
// At minimum, lwork >= max(m,n) + max(m,n,nrhs), and this function will panic
|
||
// otherwise. A longer work will enable blocked algorithms to be called.
|
||
// In the special case that lwork == -1, work[0] will be set to the optimal working
|
||
// length.
|
||
func (impl Implementation) Dgels(trans blas.Transpose, m, n, nrhs int, a []float64, lda int, b []float64, ldb int, work []float64, lwork int) bool {
|
||
mn := min(m, n)
|
||
if lwork == -1 {
|
||
work[0] = float64(mn + max(mn, nrhs))
|
||
return true
|
||
}
|
||
checkMatrix(m, n, a, lda)
|
||
checkMatrix(max(m, n), nrhs, b, ldb)
|
||
if len(work) < lwork {
|
||
panic(shortWork)
|
||
}
|
||
if lwork < mn+max(mn, nrhs) {
|
||
panic(badWork)
|
||
}
|
||
return lapacke.Dgels(trans, m, n, nrhs, a, lda, b, ldb, work, lwork)
|
||
}
|
||
|
||
const noSVDO = "dgesvd: not coded for overwrite"
|
||
|
||
// Dgesvd computes the singular value decomposition of the input matrix A.
|
||
//
|
||
// The singular value decomposition is
|
||
// A = U * Sigma * V^T
|
||
// where Sigma is an m×n diagonal matrix containing the singular values of A,
|
||
// U is an m×m orthogonal matrix and V is an n×n orthogonal matrix. The first
|
||
// min(m,n) columns of U and V are the left and right singular vectors of A
|
||
// respectively.
|
||
//
|
||
// jobU and jobVT are options for computing the singular vectors. The behavior
|
||
// is as follows
|
||
// jobU == lapack.SVDAll All m columns of U are returned in u
|
||
// jobU == lapack.SVDInPlace The first min(m,n) columns are returned in u
|
||
// jobU == lapack.SVDOverwrite The first min(m,n) columns of U are written into a
|
||
// jobU == lapack.SVDNone The columns of U are not computed.
|
||
// The behavior is the same for jobVT and the rows of V^T. At most one of jobU
|
||
// and jobVT can equal lapack.SVDOverwrite, and Dgesvd will panic otherwise.
|
||
//
|
||
// On entry, a contains the data for the m×n matrix A. During the call to Dgesvd
|
||
// the data is overwritten. On exit, A contains the appropriate singular vectors
|
||
// if either job is lapack.SVDOverwrite.
|
||
//
|
||
// s is a slice of length at least min(m,n) and on exit contains the singular
|
||
// values in decreasing order.
|
||
//
|
||
// u contains the left singular vectors on exit, stored column-wise. If
|
||
// jobU == lapack.SVDAll, u is of size m×m. If jobU == lapack.SVDInPlace u is
|
||
// of size m×min(m,n). If jobU == lapack.SVDOverwrite or lapack.SVDNone, u is
|
||
// not used.
|
||
//
|
||
// vt contains the left singular vectors on exit, stored rowwise. If
|
||
// jobV == lapack.SVDAll, vt is of size n×m. If jobVT == lapack.SVDInPlace vt is
|
||
// of size min(m,n)×n. If jobVT == lapack.SVDOverwrite or lapack.SVDNone, vt is
|
||
// not used.
|
||
//
|
||
// work is a slice for storing temporary memory, and lwork is the usable size of
|
||
// the slice. lwork must be at least max(5*min(m,n), 3*min(m,n)+max(m,n)).
|
||
// If lwork == -1, instead of performing Dgesvd, the optimal work length will be
|
||
// stored into work[0]. Dgesvd will panic if the working memory has insufficient
|
||
// storage.
|
||
//
|
||
// Dgesvd returns whether the decomposition successfully completed.
|
||
func (impl Implementation) Dgesvd(jobU, jobVT lapack.SVDJob, m, n int, a []float64, lda int, s, u []float64, ldu int, vt []float64, ldvt int, work []float64, lwork int) (ok bool) {
|
||
checkMatrix(m, n, a, lda)
|
||
if jobU == lapack.SVDAll {
|
||
checkMatrix(m, m, u, ldu)
|
||
} else if jobU == lapack.SVDInPlace {
|
||
checkMatrix(m, min(m, n), u, ldu)
|
||
}
|
||
if jobVT == lapack.SVDAll {
|
||
checkMatrix(n, n, vt, ldvt)
|
||
} else if jobVT == lapack.SVDInPlace {
|
||
checkMatrix(min(m, n), n, vt, ldvt)
|
||
}
|
||
if jobU == lapack.SVDOverwrite && jobVT == lapack.SVDOverwrite {
|
||
panic(noSVDO)
|
||
}
|
||
if len(s) < min(m, n) {
|
||
panic(badS)
|
||
}
|
||
if jobU == lapack.SVDOverwrite || jobVT == lapack.SVDOverwrite {
|
||
panic("lapack: SVD not coded to overwrite original matrix")
|
||
}
|
||
minWork := max(5*min(m, n), 3*min(m, n)+max(m, n))
|
||
if lwork != -1 {
|
||
if len(work) < lwork {
|
||
panic(badWork)
|
||
}
|
||
if lwork < minWork {
|
||
panic(badWork)
|
||
}
|
||
}
|
||
if lwork == -1 {
|
||
work[0] = float64(minWork)
|
||
return true
|
||
}
|
||
return lapacke.Dgesvd(lapack.Job(jobU), lapack.Job(jobVT), m, n, a, lda, s, u, ldu, vt, ldvt, work, lwork)
|
||
}
|
||
|
||
// Dgetf2 computes the LU decomposition of the m×n matrix A.
|
||
// The LU decomposition is a factorization of a into
|
||
// A = P * L * U
|
||
// where P is a permutation matrix, L is a unit lower triangular matrix, and
|
||
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored
|
||
// in place into a.
|
||
//
|
||
// ipiv is a permutation vector. It indicates that row i of the matrix was
|
||
// changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic
|
||
// otherwise. ipiv is zero-indexed.
|
||
//
|
||
// Dgetf2 returns whether the matrix A is singular. The LU decomposition will
|
||
// be computed regardless of the singularity of A, but division by zero
|
||
// will occur if the false is returned and the result is used to solve a
|
||
// system of equations.
|
||
func (Implementation) Dgetf2(m, n int, a []float64, lda int, ipiv []int) (ok bool) {
|
||
mn := min(m, n)
|
||
checkMatrix(m, n, a, lda)
|
||
if len(ipiv) < mn {
|
||
panic(badIpiv)
|
||
}
|
||
ipiv32 := make([]int32, len(ipiv))
|
||
ok = lapacke.Dgetf2(m, n, a, lda, ipiv32)
|
||
for i, v := range ipiv32 {
|
||
ipiv[i] = int(v) - 1 // Transform to zero-indexed.
|
||
}
|
||
return ok
|
||
}
|
||
|
||
// Dgetrf computes the LU decomposition of the m×n matrix A.
|
||
// The LU decomposition is a factorization of A into
|
||
// A = P * L * U
|
||
// where P is a permutation matrix, L is a unit lower triangular matrix, and
|
||
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored
|
||
// in place into a.
|
||
//
|
||
// ipiv is a permutation vector. It indicates that row i of the matrix was
|
||
// changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic
|
||
// otherwise. ipiv is zero-indexed.
|
||
//
|
||
// Dgetrf is the blocked version of the algorithm.
|
||
//
|
||
// Dgetrf returns whether the matrix A is singular. The LU decomposition will
|
||
// be computed regardless of the singularity of A, but division by zero
|
||
// will occur if the false is returned and the result is used to solve a
|
||
// system of equations.
|
||
func (impl Implementation) Dgetrf(m, n int, a []float64, lda int, ipiv []int) (ok bool) {
|
||
mn := min(m, n)
|
||
checkMatrix(m, n, a, lda)
|
||
if len(ipiv) < mn {
|
||
panic(badIpiv)
|
||
}
|
||
ipiv32 := make([]int32, len(ipiv))
|
||
ok = lapacke.Dgetrf(m, n, a, lda, ipiv32)
|
||
for i, v := range ipiv32 {
|
||
ipiv[i] = int(v) - 1 // Transform to zero-indexed.
|
||
}
|
||
return ok
|
||
}
|
||
|
||
// Dgetri computes the inverse of the matrix A using the LU factorization computed
|
||
// by Dgetrf. On entry, a contains the PLU decomposition of A as computed by
|
||
// Dgetrf and on exit contains the reciprocal of the original matrix.
|
||
//
|
||
// Dgetri will not perform the inversion if the matrix is singular, and returns
|
||
// a boolean indicating whether the inversion was successful.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length.
|
||
// At minimum, lwork >= n and this function will panic otherwise.
|
||
// Dgetri is a blocked inversion, but the block size is limited
|
||
// by the temporary space available. If lwork == -1, instead of performing Dgetri,
|
||
// the optimal work length will be stored into work[0].
|
||
func (impl Implementation) Dgetri(n int, a []float64, lda int, ipiv []int, work []float64, lwork int) (ok bool) {
|
||
checkMatrix(n, n, a, lda)
|
||
if len(ipiv) < n {
|
||
panic(badIpiv)
|
||
}
|
||
if lwork == -1 {
|
||
work[0] = float64(n)
|
||
return true
|
||
}
|
||
if lwork < n {
|
||
panic(badWork)
|
||
}
|
||
if len(work) < lwork {
|
||
panic(badWork)
|
||
}
|
||
ipiv32 := make([]int32, len(ipiv))
|
||
for i, v := range ipiv {
|
||
ipiv32[i] = int32(v) + 1 // Transform to one-indexed.
|
||
}
|
||
return lapacke.Dgetri(n, a, lda, ipiv32, work, lwork)
|
||
}
|
||
|
||
// Dgetrs solves a system of equations using an LU factorization.
|
||
// The system of equations solved is
|
||
// A * X = B if trans == blas.Trans
|
||
// A^T * X = B if trans == blas.NoTrans
|
||
// A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs.
|
||
//
|
||
// On entry b contains the elements of the matrix B. On exit, b contains the
|
||
// elements of X, the solution to the system of equations.
|
||
//
|
||
// a and ipiv contain the LU factorization of A and the permutation indices as
|
||
// computed by Dgetrf. ipiv is zero-indexed.
|
||
func (impl Implementation) Dgetrs(trans blas.Transpose, n, nrhs int, a []float64, lda int, ipiv []int, b []float64, ldb int) {
|
||
checkMatrix(n, n, a, lda)
|
||
checkMatrix(n, nrhs, b, ldb)
|
||
if len(ipiv) < n {
|
||
panic(badIpiv)
|
||
}
|
||
ipiv32 := make([]int32, len(ipiv))
|
||
for i, v := range ipiv {
|
||
ipiv32[i] = int32(v) + 1 // Transform to one-indexed.
|
||
}
|
||
lapacke.Dgetrs(trans, n, nrhs, a, lda, ipiv32, b, ldb)
|
||
}
|
||
|
||
// Dggsvd3 computes the generalized singular value decomposition (GSVD)
|
||
// of an m×n matrix A and p×n matrix B:
|
||
// U^T*A*Q = D1*[ 0 R ]
|
||
//
|
||
// V^T*B*Q = D2*[ 0 R ]
|
||
// where U, V and Q are orthogonal matrices.
|
||
//
|
||
// Dggsvd3 returns k and l, the dimensions of the sub-blocks. k+l
|
||
// is the effective numerical rank of the (m+p)×n matrix [ A^T B^T ]^T.
|
||
// R is a (k+l)×(k+l) nonsingular upper triangular matrix, D1 and
|
||
// D2 are m×(k+l) and p×(k+l) diagonal matrices and of the following
|
||
// structures, respectively:
|
||
//
|
||
// If m-k-l >= 0,
|
||
//
|
||
// k l
|
||
// D1 = k [ I 0 ]
|
||
// l [ 0 C ]
|
||
// m-k-l [ 0 0 ]
|
||
//
|
||
// k l
|
||
// D2 = l [ 0 S ]
|
||
// p-l [ 0 0 ]
|
||
//
|
||
// n-k-l k l
|
||
// [ 0 R ] = k [ 0 R11 R12 ] k
|
||
// l [ 0 0 R22 ] l
|
||
//
|
||
// where
|
||
//
|
||
// C = diag( alpha_k, ... , alpha_{k+l} ),
|
||
// S = diag( beta_k, ... , beta_{k+l} ),
|
||
// C^2 + S^2 = I.
|
||
//
|
||
// R is stored in
|
||
// A[0:k+l, n-k-l:n]
|
||
// on exit.
|
||
//
|
||
// If m-k-l < 0,
|
||
//
|
||
// k m-k k+l-m
|
||
// D1 = k [ I 0 0 ]
|
||
// m-k [ 0 C 0 ]
|
||
//
|
||
// k m-k k+l-m
|
||
// D2 = m-k [ 0 S 0 ]
|
||
// k+l-m [ 0 0 I ]
|
||
// p-l [ 0 0 0 ]
|
||
//
|
||
// n-k-l k m-k k+l-m
|
||
// [ 0 R ] = k [ 0 R11 R12 R13 ]
|
||
// m-k [ 0 0 R22 R23 ]
|
||
// k+l-m [ 0 0 0 R33 ]
|
||
//
|
||
// where
|
||
// C = diag( alpha_k, ... , alpha_m ),
|
||
// S = diag( beta_k, ... , beta_m ),
|
||
// C^2 + S^2 = I.
|
||
//
|
||
// R = [ R11 R12 R13 ] is stored in A[1:m, n-k-l+1:n]
|
||
// [ 0 R22 R23 ]
|
||
// and R33 is stored in
|
||
// B[m-k:l, n+m-k-l:n] on exit.
|
||
//
|
||
// Dggsvd3 computes C, S, R, and optionally the orthogonal transformation
|
||
// matrices U, V and Q.
|
||
//
|
||
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
|
||
// is as follows
|
||
// jobU == lapack.GSVDU Compute orthogonal matrix U
|
||
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
|
||
// The behavior is the same for jobV and jobQ with the exception that instead of
|
||
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
|
||
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
|
||
// relevant job parameter is lapack.GSVDNone.
|
||
//
|
||
// alpha and beta must have length n or Dggsvd3 will panic. On exit, alpha and
|
||
// beta contain the generalized singular value pairs of A and B
|
||
// alpha[0:k] = 1,
|
||
// beta[0:k] = 0,
|
||
// if m-k-l >= 0,
|
||
// alpha[k:k+l] = diag(C),
|
||
// beta[k:k+l] = diag(S),
|
||
// if m-k-l < 0,
|
||
// alpha[k:m]= C, alpha[m:k+l]= 0
|
||
// beta[k:m] = S, beta[m:k+l] = 1.
|
||
// if k+l < n,
|
||
// alpha[k+l:n] = 0 and
|
||
// beta[k+l:n] = 0.
|
||
//
|
||
// On exit, iwork contains the permutation required to sort alpha descending.
|
||
//
|
||
// iwork must have length n, work must have length at least max(1, lwork), and
|
||
// lwork must be -1 or greater than n, otherwise Dggsvd3 will panic. If
|
||
// lwork is -1, work[0] holds the optimal lwork on return, but Dggsvd3 does
|
||
// not perform the GSVD.
|
||
func (impl Implementation) Dggsvd3(jobU, jobV, jobQ lapack.GSVDJob, m, n, p int, a []float64, lda int, b []float64, ldb int, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64, lwork int, iwork []int) (k, l int, ok bool) {
|
||
checkMatrix(m, n, a, lda)
|
||
checkMatrix(p, n, b, ldb)
|
||
|
||
switch jobU {
|
||
case lapack.GSVDU:
|
||
checkMatrix(m, m, u, ldu)
|
||
case lapack.GSVDNone:
|
||
default:
|
||
panic(badGSVDJob + "U")
|
||
}
|
||
switch jobV {
|
||
case lapack.GSVDV:
|
||
checkMatrix(p, p, v, ldv)
|
||
case lapack.GSVDNone:
|
||
default:
|
||
panic(badGSVDJob + "V")
|
||
}
|
||
switch jobQ {
|
||
case lapack.GSVDQ:
|
||
checkMatrix(n, n, q, ldq)
|
||
case lapack.GSVDNone:
|
||
default:
|
||
panic(badGSVDJob + "Q")
|
||
}
|
||
|
||
if len(alpha) != n {
|
||
panic(badAlpha)
|
||
}
|
||
if len(beta) != n {
|
||
panic(badBeta)
|
||
}
|
||
|
||
if lwork != -1 && lwork <= n {
|
||
panic(badWork)
|
||
}
|
||
if len(work) < max(1, lwork) {
|
||
panic(shortWork)
|
||
}
|
||
if len(iwork) < n {
|
||
panic(badWork)
|
||
}
|
||
|
||
_k := []int32{0}
|
||
_l := []int32{0}
|
||
_iwork := make([]int32, len(iwork))
|
||
for i, v := range iwork {
|
||
v++
|
||
if v != int(int32(v)) {
|
||
panic("lapack: iwork element out of range")
|
||
}
|
||
_iwork[i] = int32(v)
|
||
}
|
||
ok = lapacke.Dggsvd3(lapack.Job(jobU), lapack.Job(jobV), lapack.Job(jobQ), m, n, p, _k, _l, a, lda, b, ldb, alpha, beta, u, ldu, v, ldv, q, ldq, work, lwork, _iwork)
|
||
for i, v := range _iwork {
|
||
iwork[i] = int(v - 1)
|
||
}
|
||
|
||
return int(_k[0]), int(_l[0]), ok
|
||
}
|
||
|
||
// Dggsvp3 computes orthogonal matrices U, V and Q such that
|
||
//
|
||
// n-k-l k l
|
||
// U^T*A*Q = k [ 0 A12 A13 ] if m-k-l >= 0;
|
||
// l [ 0 0 A23 ]
|
||
// m-k-l [ 0 0 0 ]
|
||
//
|
||
// n-k-l k l
|
||
// U^T*A*Q = k [ 0 A12 A13 ] if m-k-l < 0;
|
||
// m-k [ 0 0 A23 ]
|
||
//
|
||
// n-k-l k l
|
||
// V^T*B*Q = l [ 0 0 B13 ]
|
||
// p-l [ 0 0 0 ]
|
||
//
|
||
// where the k×k matrix A12 and l×l matrix B13 are non-singular
|
||
// upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
|
||
// otherwise A23 is (m-k)×l upper trapezoidal.
|
||
//
|
||
// Dggsvp3 returns k and l, the dimensions of the sub-blocks. k+l
|
||
// is the effective numerical rank of the (m+p)×n matrix [ A^T B^T ]^T.
|
||
//
|
||
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
|
||
// is as follows
|
||
// jobU == lapack.GSVDU Compute orthogonal matrix U
|
||
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
|
||
// The behavior is the same for jobV and jobQ with the exception that instead of
|
||
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
|
||
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
|
||
// relevant job parameter is lapack.GSVDNone.
|
||
//
|
||
// tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
|
||
// iteration procedure. Generally, they are the same as used in the preprocessing
|
||
// step, for example,
|
||
// tola = max(m, n)*norm(A)*eps,
|
||
// tolb = max(p, n)*norm(B)*eps.
|
||
// Where eps is the machine epsilon.
|
||
//
|
||
// iwork must have length n, work must have length at least max(1, lwork), and
|
||
// lwork must be -1 or greater than zero, otherwise Dggsvp3 will panic.
|
||
//
|
||
// Dggsvp3 is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dggsvp3(jobU, jobV, jobQ lapack.GSVDJob, m, p, n int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, iwork []int, tau, work []float64, lwork int) (k, l int) {
|
||
checkMatrix(m, n, a, lda)
|
||
checkMatrix(p, n, b, ldb)
|
||
|
||
wantu := jobU == lapack.GSVDU
|
||
if !wantu && jobU != lapack.GSVDNone {
|
||
panic(badGSVDJob + "U")
|
||
}
|
||
if jobU != lapack.GSVDNone {
|
||
checkMatrix(m, m, u, ldu)
|
||
}
|
||
|
||
wantv := jobV == lapack.GSVDV
|
||
if !wantv && jobV != lapack.GSVDNone {
|
||
panic(badGSVDJob + "V")
|
||
}
|
||
if jobV != lapack.GSVDNone {
|
||
checkMatrix(p, p, v, ldv)
|
||
}
|
||
|
||
wantq := jobQ == lapack.GSVDQ
|
||
if !wantq && jobQ != lapack.GSVDNone {
|
||
panic(badGSVDJob + "Q")
|
||
}
|
||
if jobQ != lapack.GSVDNone {
|
||
checkMatrix(n, n, q, ldq)
|
||
}
|
||
|
||
if len(tau) < n {
|
||
panic(badTau)
|
||
}
|
||
if len(iwork) != n {
|
||
panic(badWork)
|
||
}
|
||
if lwork != -1 && lwork < 1 {
|
||
panic(badWork)
|
||
}
|
||
if len(work) < max(1, lwork) {
|
||
panic(shortWork)
|
||
}
|
||
|
||
_k := []int32{0}
|
||
_l := []int32{0}
|
||
_iwork := make([]int32, len(iwork))
|
||
for i, v := range iwork {
|
||
v++
|
||
if v != int(int32(v)) {
|
||
panic("lapack: iwork element out of range")
|
||
}
|
||
_iwork[i] = int32(v)
|
||
}
|
||
lapacke.Dggsvp3(lapack.Job(jobU), lapack.Job(jobV), lapack.Job(jobQ), m, p, n, a, lda, b, ldb, tola, tolb, _k, _l, u, ldu, v, ldv, q, ldq, _iwork, tau, work, lwork)
|
||
for i, v := range _iwork {
|
||
iwork[i] = int(v - 1)
|
||
}
|
||
|
||
return int(_k[0]), int(_l[0])
|
||
}
|
||
|
||
// Dorgbr generates one of the matrices Q or P^T computed by Dgebrd.
|
||
// See Dgebrd for the description of Q and P^T.
|
||
//
|
||
// If vect == lapack.ApplyQ, then a is assumed to have been an m×k matrix and
|
||
// Q is of order m. If m >= k, then Dorgbr returns the first n columns of Q
|
||
// where m >= n >= k. If m < k, then Dorgbr returns Q as an m×m matrix.
|
||
//
|
||
// If vect == lapack.ApplyP, then A is assumed to have been a k×n matrix, and
|
||
// P^T is of order n. If k < n, then Dorgbr returns the first m rows of P^T,
|
||
// where n >= m >= k. If k >= n, then Dorgbr returns P^T as an n×n matrix.
|
||
func (impl Implementation) Dorgbr(vect lapack.DecompUpdate, m, n, k int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
mn := min(m, n)
|
||
wantq := vect == lapack.ApplyQ
|
||
if wantq {
|
||
if m < n || n < min(m, k) || m < min(m, k) {
|
||
panic(badDims)
|
||
}
|
||
} else {
|
||
if n < m || m < min(n, k) || n < min(n, k) {
|
||
panic(badDims)
|
||
}
|
||
}
|
||
if wantq {
|
||
checkMatrix(m, k, a, lda)
|
||
} else {
|
||
checkMatrix(k, n, a, lda)
|
||
}
|
||
if lwork == -1 {
|
||
work[0] = float64(mn)
|
||
return
|
||
}
|
||
if len(work) < lwork {
|
||
panic(badWork)
|
||
}
|
||
if lwork < mn {
|
||
panic(badWork)
|
||
}
|
||
lapacke.Dorgbr(byte(vect), m, n, k, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dorghr generates an n×n orthogonal matrix Q which is defined as the product
|
||
// of ihi-ilo elementary reflectors:
|
||
// Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
|
||
//
|
||
// a and lda represent an n×n matrix that contains the elementary reflectors, as
|
||
// returned by Dgehrd. On return, a is overwritten by the n×n orthogonal matrix
|
||
// Q. Q will be equal to the identity matrix except in the submatrix
|
||
// Q[ilo+1:ihi+1,ilo+1:ihi+1].
|
||
//
|
||
// ilo and ihi must have the same values as in the previous call of Dgehrd. It
|
||
// must hold that
|
||
// 0 <= ilo <= ihi < n, if n > 0,
|
||
// ilo = 0, ihi = -1, if n == 0.
|
||
//
|
||
// tau contains the scalar factors of the elementary reflectors, as returned by
|
||
// Dgehrd. tau must have length n-1.
|
||
//
|
||
// work must have length at least max(1,lwork) and lwork must be at least
|
||
// ihi-ilo. For optimum performance lwork must be at least (ihi-ilo)*nb where nb
|
||
// is the optimal blocksize. On return, work[0] will contain the optimal value
|
||
// of lwork.
|
||
//
|
||
// If lwork == -1, instead of performing Dorghr, only the optimal value of lwork
|
||
// will be stored into work[0].
|
||
//
|
||
// If any requirement on input sizes is not met, Dorghr will panic.
|
||
//
|
||
// Dorghr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorghr(n, ilo, ihi int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
checkMatrix(n, n, a, lda)
|
||
nh := ihi - ilo
|
||
switch {
|
||
case ilo < 0 || max(1, n) <= ilo:
|
||
panic(badIlo)
|
||
case ihi < min(ilo, n-1) || n <= ihi:
|
||
panic(badIhi)
|
||
case lwork < max(1, nh) && lwork != -1:
|
||
panic(badWork)
|
||
case len(work) < max(1, lwork):
|
||
panic(shortWork)
|
||
}
|
||
lapacke.Dorghr(n, ilo+1, ihi+1, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dorglq generates an m×n matrix Q with orthonormal rows defined by the product
|
||
// of elementary reflectors
|
||
// Q = H_{k-1} * ... * H_1 * H_0
|
||
// as computed by Dgelqf. Dorglq is the blocked version of Dorgl2 that makes
|
||
// greater use of level-3 BLAS routines.
|
||
//
|
||
// len(tau) >= k, 0 <= k <= n, and 0 <= m <= n.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length. At minimum,
|
||
// lwork >= m, and the amount of blocking is limited by the usable length.
|
||
// If lwork == -1, instead of computing Dorglq the optimal work length is stored
|
||
// into work[0].
|
||
//
|
||
// Dorglq will panic if the conditions on input values are not met.
|
||
//
|
||
// Dorglq is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorglq(m, n, k int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
if lwork == -1 {
|
||
work[0] = float64(m)
|
||
return
|
||
}
|
||
checkMatrix(m, n, a, lda)
|
||
if k < 0 {
|
||
panic(kLT0)
|
||
}
|
||
if k > m {
|
||
panic(kGTM)
|
||
}
|
||
if m > n {
|
||
panic(nLTM)
|
||
}
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
if len(work) < lwork {
|
||
panic(shortWork)
|
||
}
|
||
if lwork < m {
|
||
panic(badWork)
|
||
}
|
||
lapacke.Dorglq(m, n, k, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dorgql generates the m×n matrix Q with orthonormal columns defined as the
|
||
// last n columns of a product of k elementary reflectors of order m
|
||
// Q = H_{k-1} * ... * H_1 * H_0.
|
||
//
|
||
// It must hold that
|
||
// 0 <= k <= n <= m,
|
||
// and Dorgql will panic otherwise.
|
||
//
|
||
// On entry, the (n-k+i)-th column of A must contain the vector which defines
|
||
// the elementary reflector H_i, for i=0,...,k-1, and tau[i] must contain its
|
||
// scalar factor. On return, a contains the m×n matrix Q.
|
||
//
|
||
// tau must have length at least k, and Dorgql will panic otherwise.
|
||
//
|
||
// work must have length at least max(1,lwork), and lwork must be at least
|
||
// max(1,n), otherwise Dorgql will panic. For optimum performance lwork must
|
||
// be a sufficiently large multiple of n.
|
||
//
|
||
// If lwork == -1, instead of computing Dorgql the optimal work length is stored
|
||
// into work[0].
|
||
//
|
||
// Dorgql is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorgql(m, n, k int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
switch {
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case m < n:
|
||
panic(mLTN)
|
||
case k < 0:
|
||
panic(kLT0)
|
||
case k > n:
|
||
panic(kGTN)
|
||
case lwork < max(1, n) && lwork != -1:
|
||
panic(badWork)
|
||
case len(work) < lwork:
|
||
panic(shortWork)
|
||
}
|
||
if lwork != -1 {
|
||
checkMatrix(m, n, a, lda)
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
}
|
||
|
||
lapacke.Dorgql(m, n, k, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dorgqr generates an m×n matrix Q with orthonormal columns defined by the
|
||
// product of elementary reflectors
|
||
// Q = H_0 * H_1 * ... * H_{k-1}
|
||
// as computed by Dgeqrf. Dorgqr is the blocked version of Dorg2r that makes
|
||
// greater use of level-3 BLAS routines.
|
||
//
|
||
// The length of tau must be at least k, and the length of work must be at least n.
|
||
// It also must be that 0 <= k <= n and 0 <= n <= m.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length. At
|
||
// minimum, lwork >= n, and the amount of blocking is limited by the usable
|
||
// length. If lwork == -1, instead of computing Dorgqr the optimal work length
|
||
// is stored into work[0].
|
||
//
|
||
// Dorgqr will panic if the conditions on input values are not met.
|
||
//
|
||
// Dorgqr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorgqr(m, n, k int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
if lwork == -1 {
|
||
work[0] = float64(n)
|
||
return
|
||
}
|
||
checkMatrix(m, n, a, lda)
|
||
if k < 0 {
|
||
panic(kLT0)
|
||
}
|
||
if k > n {
|
||
panic(kGTN)
|
||
}
|
||
if n > m {
|
||
panic(mLTN)
|
||
}
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
if len(work) < lwork {
|
||
panic(shortWork)
|
||
}
|
||
if lwork < n {
|
||
panic(badWork)
|
||
}
|
||
lapacke.Dorgqr(m, n, k, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dorgtr generates a real orthogonal matrix Q which is defined as the product
|
||
// of n-1 elementary reflectors of order n as returned by Dsytrd.
|
||
//
|
||
// The construction of Q depends on the value of uplo:
|
||
// Q = H_{n-1} * ... * H_1 * H_0 if uplo == blas.Upper
|
||
// Q = H_0 * H_1 * ... * H_{n-1} if uplo == blas.Lower
|
||
// where H_i is constructed from the elementary reflectors as computed by Dsytrd.
|
||
// See the documentation for Dsytrd for more information.
|
||
//
|
||
// tau must have length at least n-1, and Dorgtr will panic otherwise.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length. At
|
||
// minimum, lwork >= max(1,n-1), and Dorgtr will panic otherwise. The amount of blocking
|
||
// is limited by the usable length.
|
||
// If lwork == -1, instead of computing Dorgtr the optimal work length is stored
|
||
// into work[0].
|
||
//
|
||
// Dorgtr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dorgtr(uplo blas.Uplo, n int, a []float64, lda int, tau, work []float64, lwork int) {
|
||
checkMatrix(n, n, a, lda)
|
||
if len(tau) < n-1 {
|
||
panic(badTau)
|
||
}
|
||
if len(work) < lwork {
|
||
panic(badWork)
|
||
}
|
||
if lwork < n-1 && lwork != -1 {
|
||
panic(badWork)
|
||
}
|
||
upper := uplo == blas.Upper
|
||
if !upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
lapacke.Dorgtr(uplo, n, a, lda, tau, work, lwork)
|
||
}
|
||
|
||
// Dormbr applies a multiplicative update to the matrix C based on a
|
||
// decomposition computed by Dgebrd.
|
||
//
|
||
// Dormbr overwrites the m×n matrix C with
|
||
// Q * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.NoTrans
|
||
// C * Q if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.NoTrans
|
||
// Q^T * C if vect == lapack.ApplyQ, side == blas.Left, and trans == blas.Trans
|
||
// C * Q^T if vect == lapack.ApplyQ, side == blas.Right, and trans == blas.Trans
|
||
//
|
||
// P * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.NoTrans
|
||
// C * P if vect == lapack.ApplyP, side == blas.Right, and trans == blas.NoTrans
|
||
// P^T * C if vect == lapack.ApplyP, side == blas.Left, and trans == blas.Trans
|
||
// C * P^T if vect == lapack.ApplyP, side == blas.Right, and trans == blas.Trans
|
||
// where P and Q are the orthogonal matrices determined by Dgebrd when reducing
|
||
// a matrix A to bidiagonal form: A = Q * B * P^T. See Dgebrd for the
|
||
// definitions of Q and P.
|
||
//
|
||
// If vect == lapack.ApplyQ, A is assumed to have been an nq×k matrix, while if
|
||
// vect == lapack.ApplyP, A is assumed to have been a k×nq matrix. nq = m if
|
||
// side == blas.Left, while nq = n if side == blas.Right.
|
||
//
|
||
// tau must have length min(nq,k), and Dormbr will panic otherwise. tau contains
|
||
// the elementary reflectors to construct Q or P depending on the value of
|
||
// vect.
|
||
//
|
||
// work must have length at least max(1,lwork), and lwork must be either -1 or
|
||
// at least max(1,n) if side == blas.Left, and at least max(1,m) if side ==
|
||
// blas.Right. For optimum performance lwork should be at least n*nb if side ==
|
||
// blas.Left, and at least m*nb if side == blas.Right, where nb is the optimal
|
||
// block size. On return, work[0] will contain the optimal value of lwork.
|
||
//
|
||
// If lwork == -1, the function only calculates the optimal value of lwork and
|
||
// returns it in work[0].
|
||
//
|
||
// Dormbr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dormbr(vect lapack.DecompUpdate, side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
|
||
if side != blas.Left && side != blas.Right {
|
||
panic(badSide)
|
||
}
|
||
if trans != blas.NoTrans && trans != blas.Trans {
|
||
panic(badTrans)
|
||
}
|
||
if vect != lapack.ApplyP && vect != lapack.ApplyQ {
|
||
panic(badDecompUpdate)
|
||
}
|
||
nq := n
|
||
nw := m
|
||
if side == blas.Left {
|
||
nq = m
|
||
nw = n
|
||
}
|
||
if vect == lapack.ApplyQ {
|
||
checkMatrix(nq, min(nq, k), a, lda)
|
||
} else {
|
||
checkMatrix(min(nq, k), nq, a, lda)
|
||
}
|
||
if len(tau) < min(nq, k) {
|
||
panic(badTau)
|
||
}
|
||
checkMatrix(m, n, c, ldc)
|
||
if len(work) < lwork {
|
||
panic(shortWork)
|
||
}
|
||
if lwork < max(1, nw) && lwork != -1 {
|
||
panic(badWork)
|
||
}
|
||
lapacke.Dormbr(byte(vect), side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork)
|
||
}
|
||
|
||
// Dormhr multiplies an m×n general matrix C with an nq×nq orthogonal matrix Q
|
||
// Q * C, if side == blas.Left and trans == blas.NoTrans,
|
||
// Q^T * C, if side == blas.Left and trans == blas.Trans,
|
||
// C * Q, if side == blas.Right and trans == blas.NoTrans,
|
||
// C * Q^T, if side == blas.Right and trans == blas.Trans,
|
||
// where nq == m if side == blas.Left and nq == n if side == blas.Right.
|
||
//
|
||
// Q is defined implicitly as the product of ihi-ilo elementary reflectors, as
|
||
// returned by Dgehrd:
|
||
// Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}.
|
||
// Q is equal to the identity matrix except in the submatrix
|
||
// Q[ilo+1:ihi+1,ilo+1:ihi+1].
|
||
//
|
||
// ilo and ihi must have the same values as in the previous call of Dgehrd. It
|
||
// must hold that
|
||
// 0 <= ilo <= ihi < m, if m > 0 and side == blas.Left,
|
||
// ilo = 0 and ihi = -1, if m = 0 and side == blas.Left,
|
||
// 0 <= ilo <= ihi < n, if n > 0 and side == blas.Right,
|
||
// ilo = 0 and ihi = -1, if n = 0 and side == blas.Right.
|
||
//
|
||
// a and lda represent an m×m matrix if side == blas.Left and an n×n matrix if
|
||
// side == blas.Right. The matrix contains vectors which define the elementary
|
||
// reflectors, as returned by Dgehrd.
|
||
//
|
||
// tau contains the scalar factors of the elementary reflectors, as returned by
|
||
// Dgehrd. tau must have length m-1 if side == blas.Left and n-1 if side ==
|
||
// blas.Right.
|
||
//
|
||
// c and ldc represent the m×n matrix C. On return, c is overwritten by the
|
||
// product with Q.
|
||
//
|
||
// work must have length at least max(1,lwork), and lwork must be at least
|
||
// max(1,n), if side == blas.Left, and max(1,m), if side == blas.Right. For
|
||
// optimum performance lwork should be at least n*nb if side == blas.Left and
|
||
// m*nb if side == blas.Right, where nb is the optimal block size. On return,
|
||
// work[0] will contain the optimal value of lwork.
|
||
//
|
||
// If lwork == -1, instead of performing Dormhr, only the optimal value of lwork
|
||
// will be stored in work[0].
|
||
//
|
||
// If any requirement on input sizes is not met, Dormhr will panic.
|
||
//
|
||
// Dormhr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dormhr(side blas.Side, trans blas.Transpose, m, n, ilo, ihi int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
|
||
var (
|
||
nq int // The order of Q.
|
||
nw int // The minimum length of work.
|
||
)
|
||
switch side {
|
||
case blas.Left:
|
||
nq = m
|
||
nw = n
|
||
case blas.Right:
|
||
nq = n
|
||
nw = m
|
||
default:
|
||
panic(badSide)
|
||
}
|
||
switch {
|
||
case trans != blas.NoTrans && trans != blas.Trans:
|
||
panic(badTrans)
|
||
case ilo < 0 || max(1, nq) <= ilo:
|
||
panic(badIlo)
|
||
case ihi < min(ilo, nq-1) || nq <= ihi:
|
||
panic(badIhi)
|
||
case lwork < max(1, nw) && lwork != -1:
|
||
panic(badWork)
|
||
case len(work) < max(1, lwork):
|
||
panic(shortWork)
|
||
}
|
||
if lwork != -1 {
|
||
checkMatrix(m, n, c, ldc)
|
||
checkMatrix(nq, nq, a, lda)
|
||
if len(tau) != nq-1 && nq > 0 {
|
||
panic(badTau)
|
||
}
|
||
}
|
||
lapacke.Dormhr(side, trans, m, n, ilo+1, ihi+1, a, lda, tau, c, ldc, work, lwork)
|
||
}
|
||
|
||
// Dormlq multiplies the matrix C by the orthogonal matrix Q defined by the
|
||
// slices a and tau. A and tau are as returned from Dgelqf.
|
||
// C = Q * C if side == blas.Left and trans == blas.NoTrans
|
||
// C = Q^T * C if side == blas.Left and trans == blas.Trans
|
||
// C = C * Q if side == blas.Right and trans == blas.NoTrans
|
||
// C = C * Q^T if side == blas.Right and trans == blas.Trans
|
||
// If side == blas.Left, A is a matrix of side k×m, and if side == blas.Right
|
||
// A is of size k×n. This uses a blocked algorithm.
|
||
//
|
||
// Work is temporary storage, and lwork specifies the usable memory length.
|
||
// At minimum, lwork >= m if side == blas.Left and lwork >= n if side == blas.Right,
|
||
// and this function will panic otherwise.
|
||
// Dormlq uses a block algorithm, but the block size is limited
|
||
// by the temporary space available. If lwork == -1, instead of performing Dormlq,
|
||
// the optimal work length will be stored into work[0].
|
||
//
|
||
// tau contains the Householder scales and must have length at least k, and
|
||
// this function will panic otherwise.
|
||
func (impl Implementation) Dormlq(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
|
||
if side != blas.Left && side != blas.Right {
|
||
panic(badSide)
|
||
}
|
||
if trans != blas.Trans && trans != blas.NoTrans {
|
||
panic(badTrans)
|
||
}
|
||
left := side == blas.Left
|
||
if left {
|
||
checkMatrix(k, m, a, lda)
|
||
} else {
|
||
checkMatrix(k, n, a, lda)
|
||
}
|
||
checkMatrix(m, n, c, ldc)
|
||
if len(tau) < k {
|
||
panic(badTau)
|
||
}
|
||
if len(work) < lwork {
|
||
panic(shortWork)
|
||
}
|
||
nw := m
|
||
if left {
|
||
nw = n
|
||
}
|
||
if lwork < max(1, nw) && lwork != -1 {
|
||
panic(badWork)
|
||
}
|
||
|
||
lapacke.Dormlq(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork)
|
||
}
|
||
|
||
// Dormqr multiplies an m×n matrix C by an orthogonal matrix Q as
|
||
// C = Q * C, if side == blas.Left and trans == blas.NoTrans,
|
||
// C = Q^T * C, if side == blas.Left and trans == blas.Trans,
|
||
// C = C * Q, if side == blas.Right and trans == blas.NoTrans,
|
||
// C = C * Q^T, if side == blas.Right and trans == blas.Trans,
|
||
// where Q is defined as the product of k elementary reflectors
|
||
// Q = H_0 * H_1 * ... * H_{k-1}.
|
||
//
|
||
// If side == blas.Left, A is an m×k matrix and 0 <= k <= m.
|
||
// If side == blas.Right, A is an n×k matrix and 0 <= k <= n.
|
||
// The ith column of A contains the vector which defines the elementary
|
||
// reflector H_i and tau[i] contains its scalar factor. tau must have length k
|
||
// and Dormqr will panic otherwise. Dgeqrf returns A and tau in the required
|
||
// form.
|
||
//
|
||
// work must have length at least max(1,lwork), and lwork must be at least n if
|
||
// side == blas.Left and at least m if side == blas.Right, otherwise Dormqr will
|
||
// panic.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length. At
|
||
// minimum, lwork >= m if side == blas.Left and lwork >= n if side ==
|
||
// blas.Right, and this function will panic otherwise. Larger values of lwork
|
||
// will generally give better performance. On return, work[0] will contain the
|
||
// optimal value of lwork.
|
||
//
|
||
// If lwork is -1, instead of performing Dormqr, the optimal workspace size will
|
||
// be stored into work[0].
|
||
func (impl Implementation) Dormqr(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) {
|
||
var nq, nw int
|
||
switch side {
|
||
default:
|
||
panic(badSide)
|
||
case blas.Left:
|
||
nq = m
|
||
nw = n
|
||
case blas.Right:
|
||
nq = n
|
||
nw = m
|
||
}
|
||
switch {
|
||
case trans != blas.NoTrans && trans != blas.Trans:
|
||
panic(badTrans)
|
||
case m < 0 || n < 0:
|
||
panic(negDimension)
|
||
case k < 0 || nq < k:
|
||
panic("lapack: invalid value of k")
|
||
case len(work) < lwork:
|
||
panic(shortWork)
|
||
case lwork < max(1, nw) && lwork != -1:
|
||
panic(badWork)
|
||
}
|
||
if lwork != -1 {
|
||
checkMatrix(nq, k, a, lda)
|
||
checkMatrix(m, n, c, ldc)
|
||
if len(tau) != k {
|
||
panic(badTau)
|
||
}
|
||
}
|
||
|
||
lapacke.Dormqr(side, trans, m, n, k, a, lda, tau, c, ldc, work, lwork)
|
||
}
|
||
|
||
// Dpocon estimates the reciprocal of the condition number of a positive-definite
|
||
// matrix A given the Cholesky decomposition of A. The condition number computed
|
||
// is based on the 1-norm and the ∞-norm.
|
||
//
|
||
// anorm is the 1-norm and the ∞-norm of the original matrix A.
|
||
//
|
||
// work is a temporary data slice of length at least 3*n and Dpocon will panic otherwise.
|
||
//
|
||
// iwork is a temporary data slice of length at least n and Dpocon will panic otherwise.
|
||
// Elements of iwork must fit within the int32 type or Dpocon will panic.
|
||
func (impl Implementation) Dpocon(uplo blas.Uplo, n int, a []float64, lda int, anorm float64, work []float64, iwork []int) float64 {
|
||
checkMatrix(n, n, a, lda)
|
||
if uplo != blas.Upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
if len(work) < 3*n {
|
||
panic(badWork)
|
||
}
|
||
if len(iwork) < n {
|
||
panic(badWork)
|
||
}
|
||
rcond := make([]float64, 1)
|
||
_iwork := make([]int32, len(iwork))
|
||
for i, v := range iwork {
|
||
if v != int(int32(v)) {
|
||
panic("lapack: iwork element out of range")
|
||
}
|
||
_iwork[i] = int32(v)
|
||
}
|
||
lapacke.Dpocon(uplo, n, a, lda, anorm, rcond, work, _iwork)
|
||
for i, v := range _iwork {
|
||
iwork[i] = int(v)
|
||
}
|
||
return rcond[0]
|
||
}
|
||
|
||
// Dsteqr computes the eigenvalues and optionally the eigenvectors of a symmetric
|
||
// tridiagonal matrix using the implicit QL or QR method. The eigenvectors of a
|
||
// full or band symmetric matrix can also be found if Dsytrd, Dsptrd, or Dsbtrd
|
||
// have been used to reduce this matrix to tridiagonal form.
|
||
//
|
||
// d, on entry, contains the diagonal elements of the tridiagonal matrix. On exit,
|
||
// d contains the eigenvalues in ascending order. d must have length n and
|
||
// Dsteqr will panic otherwise.
|
||
//
|
||
// e, on entry, contains the off-diagonal elements of the tridiagonal matrix on
|
||
// entry, and is overwritten during the call to Dsteqr. e must have length n-1 and
|
||
// Dsteqr will panic otherwise.
|
||
//
|
||
// z, on entry, contains the n×n orthogonal matrix used in the reduction to
|
||
// tridiagonal form if compz == lapack.OriginalEV. On exit, if
|
||
// compz == lapack.OriginalEV, z contains the orthonormal eigenvectors of the
|
||
// original symmetric matrix, and if compz == lapack.TridiagEV, z contains the
|
||
// orthonormal eigenvectors of the symmetric tridiagonal matrix. z is not used
|
||
// if compz == lapack.None.
|
||
//
|
||
// work must have length at least max(1, 2*n-2) if the eigenvectors are computed,
|
||
// and Dsteqr will panic otherwise.
|
||
//
|
||
// Dsteqr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dsteqr(compz lapack.EVComp, n int, d, e, z []float64, ldz int, work []float64) (ok bool) {
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if len(d) < n {
|
||
panic(badD)
|
||
}
|
||
if len(e) < n-1 {
|
||
panic(badE)
|
||
}
|
||
if compz != lapack.None && compz != lapack.TridiagEV && compz != lapack.OriginalEV {
|
||
panic(badEVComp)
|
||
}
|
||
if compz != lapack.None {
|
||
if len(work) < max(1, 2*n-2) {
|
||
panic(badWork)
|
||
}
|
||
checkMatrix(n, n, z, ldz)
|
||
}
|
||
|
||
return lapacke.Dsteqr(lapack.Comp(compz), n, d, e, z, ldz, work)
|
||
}
|
||
|
||
// Dsterf computes all eigenvalues of a symmetric tridiagonal matrix using the
|
||
// Pal-Walker-Kahan variant of the QL or QR algorithm.
|
||
//
|
||
// d contains the diagonal elements of the tridiagonal matrix on entry, and
|
||
// contains the eigenvalues in ascending order on exit. d must have length at
|
||
// least n, or Dsterf will panic.
|
||
//
|
||
// e contains the off-diagonal elements of the tridiagonal matrix on entry, and is
|
||
// overwritten during the call to Dsterf. e must have length of at least n-1 or
|
||
// Dsterf will panic.
|
||
//
|
||
// Dsterf is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dsterf(n int, d, e []float64) (ok bool) {
|
||
if n < 0 {
|
||
panic(nLT0)
|
||
}
|
||
if n == 0 {
|
||
return true
|
||
}
|
||
if len(d) < n {
|
||
panic(badD)
|
||
}
|
||
if len(e) < n-1 {
|
||
panic(badE)
|
||
}
|
||
|
||
return lapacke.Dsterf(n, d, e)
|
||
}
|
||
|
||
// Dsyev computes all eigenvalues and, optionally, the eigenvectors of a real
|
||
// symmetric matrix A.
|
||
//
|
||
// w contains the eigenvalues in ascending order upon return. w must have length
|
||
// at least n, and Dsyev will panic otherwise.
|
||
//
|
||
// On entry, a contains the elements of the symmetric matrix A in the triangular
|
||
// portion specified by uplo. If jobz == lapack.ComputeEV a contains the
|
||
// orthonormal eigenvectors of A on exit, otherwise on exit the specified
|
||
// triangular region is overwritten.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length. At minimum,
|
||
// lwork >= 3*n-1, and Dsyev will panic otherwise. The amount of blocking is
|
||
// limited by the usable length. If lwork == -1, instead of computing Dsyev the
|
||
// optimal work length is stored into work[0].
|
||
func (impl Implementation) Dsyev(jobz lapack.EVJob, uplo blas.Uplo, n int, a []float64, lda int, w, work []float64, lwork int) (ok bool) {
|
||
checkMatrix(n, n, a, lda)
|
||
if lwork == -1 {
|
||
work[0] = 3*float64(n) - 1
|
||
return
|
||
}
|
||
if len(work) < lwork {
|
||
panic(badWork)
|
||
}
|
||
if lwork < 3*n-1 {
|
||
panic(badWork)
|
||
}
|
||
return lapacke.Dsyev(lapack.Job(jobz), uplo, n, a, lda, w, work, lwork)
|
||
}
|
||
|
||
// Dsytrd reduces a symmetric n×n matrix A to symmetric tridiagonal form by an
|
||
// orthogonal similarity transformation
|
||
// Q^T * A * Q = T
|
||
// where Q is an orthonormal matrix and T is symmetric and tridiagonal.
|
||
//
|
||
// On entry, a contains the elements of the input matrix in the triangle specified
|
||
// by uplo. On exit, the diagonal and sub/super-diagonal are overwritten by the
|
||
// corresponding elements of the tridiagonal matrix T. The remaining elements in
|
||
// the triangle, along with the array tau, contain the data to construct Q as
|
||
// the product of elementary reflectors.
|
||
//
|
||
// If uplo == blas.Upper, Q is constructed with
|
||
// Q = H_{n-2} * ... * H_1 * H_0
|
||
// where
|
||
// H_i = I - tau_i * v * v^T
|
||
// v is constructed as v[i+1:n] = 0, v[i] = 1, v[0:i-1] is stored in A[0:i-1, i+1].
|
||
// The elements of A are
|
||
// [ d e v1 v2 v3]
|
||
// [ d e v2 v3]
|
||
// [ d e v3]
|
||
// [ d e]
|
||
// [ e]
|
||
//
|
||
// If uplo == blas.Lower, Q is constructed with
|
||
// Q = H_0 * H_1 * ... * H_{n-2}
|
||
// where
|
||
// H_i = I - tau_i * v * v^T
|
||
// v is constructed as v[0:i+1] = 0, v[i+1] = 1, v[i+2:n] is stored in A[i+2:n, i].
|
||
// The elements of A are
|
||
// [ d ]
|
||
// [ e d ]
|
||
// [v0 e d ]
|
||
// [v0 v1 e d ]
|
||
// [v0 v1 v2 e d]
|
||
//
|
||
// d must have length n, and e and tau must have length n-1. Dsytrd will panic if
|
||
// these conditions are not met.
|
||
//
|
||
// work is temporary storage, and lwork specifies the usable memory length. At minimum,
|
||
// lwork >= 1, and Dsytrd will panic otherwise. The amount of blocking is
|
||
// limited by the usable length.
|
||
// If lwork == -1, instead of computing Dsytrd the optimal work length is stored
|
||
// into work[0].
|
||
//
|
||
// Dsytrd is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dsytrd(uplo blas.Uplo, n int, a []float64, lda int, d, e, tau, work []float64, lwork int) {
|
||
checkMatrix(n, n, a, lda)
|
||
if len(d) < n {
|
||
panic(badD)
|
||
}
|
||
if len(e) < n-1 {
|
||
panic(badE)
|
||
}
|
||
if len(tau) < n-1 {
|
||
panic(badTau)
|
||
}
|
||
if len(work) < lwork {
|
||
panic(shortWork)
|
||
}
|
||
if lwork != -1 && lwork < 1 {
|
||
panic(badWork)
|
||
}
|
||
if uplo != blas.Upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
|
||
lapacke.Dsytrd(uplo, n, a, lda, d, e, tau, work, lwork)
|
||
}
|
||
|
||
// Dtrcon estimates the reciprocal of the condition number of a triangular matrix A.
|
||
// The condition number computed may be based on the 1-norm or the ∞-norm.
|
||
//
|
||
// work is a temporary data slice of length at least 3*n and Dtrcon will panic otherwise.
|
||
//
|
||
// iwork is a temporary data slice of length at least n and Dtrcon will panic otherwise.
|
||
// Elements of iwork must fit within the int32 type or Dtrcon will panic.
|
||
func (impl Implementation) Dtrcon(norm lapack.MatrixNorm, uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int, work []float64, iwork []int) float64 {
|
||
if norm != lapack.MaxColumnSum && norm != lapack.MaxRowSum {
|
||
panic(badNorm)
|
||
}
|
||
if uplo != blas.Upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
if diag != blas.NonUnit && diag != blas.Unit {
|
||
panic(badDiag)
|
||
}
|
||
if len(work) < 3*n {
|
||
panic(badWork)
|
||
}
|
||
if len(iwork) < n {
|
||
panic(badWork)
|
||
}
|
||
rcond := []float64{0}
|
||
_iwork := make([]int32, len(iwork))
|
||
for i, v := range iwork {
|
||
if v != int(int32(v)) {
|
||
panic("lapack: iwork element out of range")
|
||
}
|
||
_iwork[i] = int32(v)
|
||
}
|
||
lapacke.Dtrcon(byte(norm), uplo, diag, n, a, lda, rcond, work, _iwork)
|
||
for i, v := range _iwork {
|
||
iwork[i] = int(v)
|
||
}
|
||
return rcond[0]
|
||
}
|
||
|
||
// Dtrexc reorders the real Schur factorization of a n×n real matrix
|
||
// A = Q*T*Q^T
|
||
// so that the diagonal block of T with row index ifst is moved to row ilst.
|
||
//
|
||
// On entry, T must be in Schur canonical form, that is, block upper triangular
|
||
// with 1×1 and 2×2 diagonal blocks; each 2×2 diagonal block has its diagonal
|
||
// elements equal and its off-diagonal elements of opposite sign.
|
||
//
|
||
// On return, T will be reordered by an orthogonal similarity transformation Z
|
||
// as Z^T*T*Z, and will be again in Schur canonical form.
|
||
//
|
||
// If compq is lapack.UpdateSchur, on return the matrix Q of Schur vectors will be
|
||
// updated by postmultiplying it with Z.
|
||
// If compq is lapack.None, the matrix Q is not referenced and will not be
|
||
// updated.
|
||
// For other values of compq Dtrexc will panic.
|
||
//
|
||
// ifst and ilst specify the reordering of the diagonal blocks of T. The block
|
||
// with row index ifst is moved to row ilst, by a sequence of transpositions
|
||
// between adjacent blocks.
|
||
//
|
||
// If ifst points to the second row of a 2×2 block, ifstOut will point to the
|
||
// first row, otherwise it will be equal to ifst.
|
||
//
|
||
// ilstOut will point to the first row of the block in its final position. If ok
|
||
// is true, ilstOut may differ from ilst by +1 or -1.
|
||
//
|
||
// It must hold that
|
||
// 0 <= ifst < n, and 0 <= ilst < n,
|
||
// otherwise Dtrexc will panic.
|
||
//
|
||
// If ok is false, two adjacent blocks were too close to swap because the
|
||
// problem is very ill-conditioned. T may have been partially reordered, and
|
||
// ilstOut will point to the first row of the block at the position to which it
|
||
// has been moved.
|
||
//
|
||
// work must have length at least n, otherwise Dtrexc will panic.
|
||
//
|
||
// Dtrexc is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dtrexc(compq lapack.EVComp, n int, t []float64, ldt int, q []float64, ldq int, ifst, ilst int, work []float64) (ifstOut, ilstOut int, ok bool) {
|
||
checkMatrix(n, n, t, ldt)
|
||
switch compq {
|
||
default:
|
||
panic("lapack: bad value of compq")
|
||
case lapack.None:
|
||
// q is not referenced but LAPACKE checks that ldq >= n always.
|
||
q = nil
|
||
ldq = max(1, n)
|
||
case lapack.UpdateSchur:
|
||
checkMatrix(n, n, q, ldq)
|
||
}
|
||
if (ifst < 0 || n <= ifst) && n > 0 {
|
||
panic("lapack: ifst out of range")
|
||
}
|
||
if (ilst < 0 || n <= ilst) && n > 0 {
|
||
panic("lapack: ilst out of range")
|
||
}
|
||
if len(work) < n {
|
||
panic(badWork)
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if n <= 1 {
|
||
return ifst, ilst, true
|
||
}
|
||
|
||
ifst32 := []int32{int32(ifst + 1)}
|
||
ilst32 := []int32{int32(ilst + 1)}
|
||
ok = lapacke.Dtrexc(lapack.Comp(compq), n, t, ldt, q, ldq, ifst32, ilst32, work)
|
||
ifst = int(ifst32[0] - 1)
|
||
ilst = int(ilst32[0] - 1)
|
||
return ifst, ilst, ok
|
||
}
|
||
|
||
// Dtrtri computes the inverse of a triangular matrix, storing the result in place
|
||
// into a. This is the BLAS level 3 version of the algorithm which builds upon
|
||
// Dtrti2 to operate on matrix blocks instead of only individual columns.
|
||
//
|
||
// Dtrtri returns whether the matrix a is singular.
|
||
// If the matrix is singular, the inversion is not performed.
|
||
func (impl Implementation) Dtrtri(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) (ok bool) {
|
||
checkMatrix(n, n, a, lda)
|
||
if uplo != blas.Upper && uplo != blas.Lower {
|
||
panic(badUplo)
|
||
}
|
||
if diag != blas.NonUnit && diag != blas.Unit {
|
||
panic(badDiag)
|
||
}
|
||
return lapacke.Dtrtri(uplo, diag, n, a, lda)
|
||
}
|
||
|
||
// Dtrtrs solves a triangular system of the form A * X = B or A^T * X = B.
|
||
// Dtrtrs returns whether the solve completed successfully.
|
||
// If A is singular, no solve is performed.
|
||
func (impl Implementation) Dtrtrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, nrhs int, a []float64, lda int, b []float64, ldb int) (ok bool) {
|
||
return lapacke.Dtrtrs(uplo, trans, diag, n, nrhs, a, lda, b, ldb)
|
||
}
|
||
|
||
// Dhseqr computes the eigenvalues of an n×n Hessenberg matrix H and,
|
||
// optionally, the matrices T and Z from the Schur decomposition
|
||
// H = Z T Z^T,
|
||
// where T is an n×n upper quasi-triangular matrix (the Schur form), and Z is
|
||
// the n×n orthogonal matrix of Schur vectors.
|
||
//
|
||
// Optionally Z may be postmultiplied into an input orthogonal matrix Q so that
|
||
// this routine can give the Schur factorization of a matrix A which has been
|
||
// reduced to the Hessenberg form H by the orthogonal matrix Q:
|
||
// A = Q H Q^T = (QZ) T (QZ)^T.
|
||
//
|
||
// If job == lapack.EigenvaluesOnly, only the eigenvalues will be computed.
|
||
// If job == lapack.EigenvaluesAndSchur, the eigenvalues and the Schur form T will
|
||
// be computed.
|
||
// For other values of job Dhseqr will panic.
|
||
//
|
||
// If compz == lapack.None, no Schur vectors will be computed and Z will not be
|
||
// referenced.
|
||
// If compz == lapack.HessEV, on return Z will contain the matrix of Schur
|
||
// vectors of H.
|
||
// If compz == lapack.OriginalEV, on entry z is assumed to contain the orthogonal
|
||
// matrix Q that is the identity except for the submatrix
|
||
// Q[ilo:ihi+1,ilo:ihi+1]. On return z will be updated to the product Q*Z.
|
||
//
|
||
// ilo and ihi determine the block of H on which Dhseqr operates. It is assumed
|
||
// that H is already upper triangular in rows and columns [0:ilo] and [ihi+1:n],
|
||
// although it will be only checked that the block is isolated, that is,
|
||
// ilo == 0 or H[ilo,ilo-1] == 0,
|
||
// ihi == n-1 or H[ihi+1,ihi] == 0,
|
||
// and Dhseqr will panic otherwise. ilo and ihi are typically set by a previous
|
||
// call to Dgebal, otherwise they should be set to 0 and n-1, respectively. It
|
||
// must hold that
|
||
// 0 <= ilo <= ihi < n, if n > 0,
|
||
// ilo == 0 and ihi == -1, if n == 0.
|
||
//
|
||
// wr and wi must have length n.
|
||
//
|
||
// work must have length at least lwork and lwork must be at least max(1,n)
|
||
// otherwise Dhseqr will panic. The minimum lwork delivers very good and
|
||
// sometimes optimal performance, although lwork as large as 11*n may be
|
||
// required. On return, work[0] will contain the optimal value of lwork.
|
||
//
|
||
// If lwork is -1, instead of performing Dhseqr, the function only estimates the
|
||
// optimal workspace size and stores it into work[0]. Neither h nor z are
|
||
// accessed.
|
||
//
|
||
// unconverged indicates whether Dhseqr computed all the eigenvalues.
|
||
//
|
||
// If unconverged == 0, all the eigenvalues have been computed and their real
|
||
// and imaginary parts will be stored on return in wr and wi, respectively. If
|
||
// two eigenvalues are computed as a complex conjugate pair, they are stored in
|
||
// consecutive elements of wr and wi, say the i-th and (i+1)th, with wi[i] > 0
|
||
// and wi[i+1] < 0.
|
||
//
|
||
// If unconverged == 0 and job == lapack.EigenvaluesAndSchur, on return H will
|
||
// contain the upper quasi-triangular matrix T from the Schur decomposition (the
|
||
// Schur form). 2×2 diagonal blocks (corresponding to complex conjugate pairs of
|
||
// eigenvalues) will be returned in standard form, with
|
||
// H[i,i] == H[i+1,i+1],
|
||
// and
|
||
// H[i+1,i]*H[i,i+1] < 0.
|
||
// The eigenvalues will be stored in wr and wi in the same order as on the
|
||
// diagonal of the Schur form returned in H, with
|
||
// wr[i] = H[i,i],
|
||
// and, if H[i:i+2,i:i+2] is a 2×2 diagonal block,
|
||
// wi[i] = sqrt(-H[i+1,i]*H[i,i+1]),
|
||
// wi[i+1] = -wi[i].
|
||
//
|
||
// If unconverged == 0 and job == lapack.EigenvaluesOnly, the contents of h
|
||
// on return is unspecified.
|
||
//
|
||
// If unconverged > 0, some eigenvalues have not converged, and the blocks
|
||
// [0:ilo] and [unconverged:n] of wr and wi will contain those eigenvalues which
|
||
// have been successfully computed. Failures are rare.
|
||
//
|
||
// If unconverged > 0 and job == lapack.EigenvaluesOnly, on return the
|
||
// remaining unconverged eigenvalues are the eigenvalues of the upper Hessenberg
|
||
// matrix H[ilo:unconverged,ilo:unconverged].
|
||
//
|
||
// If unconverged > 0 and job == lapack.EigenvaluesAndSchur, then on
|
||
// return
|
||
// (initial H) U = U (final H), (*)
|
||
// where U is an orthogonal matrix. The final H is upper Hessenberg and
|
||
// H[unconverged:ihi+1,unconverged:ihi+1] is upper quasi-triangular.
|
||
//
|
||
// If unconverged > 0 and compz == lapack.OriginalEV, then on return
|
||
// (final Z) = (initial Z) U,
|
||
// where U is the orthogonal matrix in (*) regardless of the value of job.
|
||
//
|
||
// If unconverged > 0 and compz == lapack.InitZ, then on return
|
||
// (final Z) = U,
|
||
// where U is the orthogonal matrix in (*) regardless of the value of job.
|
||
//
|
||
// References:
|
||
// [1] R. Byers. LAPACK 3.1 xHSEQR: Tuning and Implementation Notes on the
|
||
// Small Bulge Multi-Shift QR Algorithm with Aggressive Early Deflation.
|
||
// LAPACK Working Note 187 (2007)
|
||
// URL: http://www.netlib.org/lapack/lawnspdf/lawn187.pdf
|
||
// [2] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part I:
|
||
// Maintaining Well-Focused Shifts and Level 3 Performance. SIAM J. Matrix
|
||
// Anal. Appl. 23(4) (2002), pp. 929—947
|
||
// URL: http://dx.doi.org/10.1137/S0895479801384573
|
||
// [3] K. Braman, R. Byers, R. Mathias. The Multishift QR Algorithm. Part II:
|
||
// Aggressive Early Deflation. SIAM J. Matrix Anal. Appl. 23(4) (2002), pp. 948—973
|
||
// URL: http://dx.doi.org/10.1137/S0895479801384585
|
||
//
|
||
// Dhseqr is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dhseqr(job lapack.EVJob, compz lapack.EVComp, n, ilo, ihi int, h []float64, ldh int, wr, wi []float64, z []float64, ldz int, work []float64, lwork int) (unconverged int) {
|
||
switch job {
|
||
default:
|
||
panic(badEVJob)
|
||
case lapack.EigenvaluesOnly, lapack.EigenvaluesAndSchur:
|
||
}
|
||
var wantz bool
|
||
switch compz {
|
||
default:
|
||
panic(badEVComp)
|
||
case lapack.None:
|
||
case lapack.HessEV, lapack.OriginalEV:
|
||
wantz = true
|
||
}
|
||
switch {
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case ilo < 0 || max(0, n-1) < ilo:
|
||
panic(badIlo)
|
||
case ihi < min(ilo, n-1) || n <= ihi:
|
||
panic(badIhi)
|
||
case len(work) < lwork:
|
||
panic(shortWork)
|
||
case lwork < max(1, n) && lwork != -1:
|
||
panic(badWork)
|
||
}
|
||
if lwork != -1 {
|
||
checkMatrix(n, n, h, ldh)
|
||
switch {
|
||
case wantz:
|
||
checkMatrix(n, n, z, ldz)
|
||
case len(wr) < n:
|
||
panic("lapack: wr has insufficient length")
|
||
case len(wi) < n:
|
||
panic("lapack: wi has insufficient length")
|
||
}
|
||
}
|
||
|
||
return lapacke.Dhseqr(lapack.Job(job), lapack.Comp(compz), n, ilo+1, ihi+1,
|
||
h, ldh, wr, wi, z, ldz, work, lwork)
|
||
}
|
||
|
||
// Dgeev computes the eigenvalues and, optionally, the left and/or right
|
||
// eigenvectors for an n×n real nonsymmetric matrix A.
|
||
//
|
||
// The right eigenvector v_j of A corresponding to an eigenvalue λ_j
|
||
// is defined by
|
||
// A v_j = λ_j v_j,
|
||
// and the left eigenvector u_j corresponding to an eigenvalue λ_j is defined by
|
||
// u_j^H A = λ_j u_j^H,
|
||
// where u_j^H is the conjugate transpose of u_j.
|
||
//
|
||
// On return, A will be overwritten and the left and right eigenvectors will be
|
||
// stored, respectively, in the columns of the n×n matrices VL and VR in the
|
||
// same order as their eigenvalues. If the j-th eigenvalue is real, then
|
||
// u_j = VL[:,j],
|
||
// v_j = VR[:,j],
|
||
// and if it is not real, then j and j+1 form a complex conjugate pair and the
|
||
// eigenvectors can be recovered as
|
||
// u_j = VL[:,j] + i*VL[:,j+1],
|
||
// u_{j+1} = VL[:,j] - i*VL[:,j+1],
|
||
// v_j = VR[:,j] + i*VR[:,j+1],
|
||
// v_{j+1} = VR[:,j] - i*VR[:,j+1].
|
||
// where i is the imaginary unit. The computed eigenvectors are normalized to
|
||
// have Euclidean norm equal to 1 and largest component real.
|
||
//
|
||
// Left eigenvectors will be computed only if jobvl == lapack.ComputeLeftEV,
|
||
// otherwise jobvl must be lapack.None. Right eigenvectors will be computed
|
||
// only if jobvr == lapack.ComputeRightEV, otherwise jobvr must be lapack.None.
|
||
// For other values of jobvl and jobvr Dgeev will panic.
|
||
//
|
||
// wr and wi contain the real and imaginary parts, respectively, of the computed
|
||
// eigenvalues. Complex conjugate pairs of eigenvalues appear consecutively with
|
||
// the eigenvalue having the positive imaginary part first.
|
||
// wr and wi must have length n, and Dgeev will panic otherwise.
|
||
//
|
||
// work must have length at least lwork and lwork must be at least max(1,4*n) if
|
||
// the left or right eigenvectors are computed, and at least max(1,3*n) if no
|
||
// eigenvectors are computed. For good performance, lwork must generally be
|
||
// larger. On return, optimal value of lwork will be stored in work[0].
|
||
//
|
||
// If lwork == -1, instead of performing Dgeev, the function only calculates the
|
||
// optimal vaule of lwork and stores it into work[0].
|
||
//
|
||
// On return, first is the index of the first valid eigenvalue. If first == 0,
|
||
// all eigenvalues and eigenvectors have been computed. If first is positive,
|
||
// Dgeev failed to compute all the eigenvalues, no eigenvectors have been
|
||
// computed and wr[first:] and wi[first:] contain those eigenvalues which have
|
||
// converged.
|
||
func (impl Implementation) Dgeev(jobvl lapack.LeftEVJob, jobvr lapack.RightEVJob, n int, a []float64, lda int, wr, wi []float64, vl []float64, ldvl int, vr []float64, ldvr int, work []float64, lwork int) (first int) {
|
||
var wantvl bool
|
||
switch jobvl {
|
||
default:
|
||
panic("lapack: invalid LeftEVJob")
|
||
case lapack.ComputeLeftEV:
|
||
wantvl = true
|
||
case lapack.None:
|
||
wantvl = false
|
||
}
|
||
var wantvr bool
|
||
switch jobvr {
|
||
default:
|
||
panic("lapack: invalid RightEVJob")
|
||
case lapack.ComputeRightEV:
|
||
wantvr = true
|
||
case lapack.None:
|
||
wantvr = false
|
||
}
|
||
switch {
|
||
case n < 0:
|
||
panic(nLT0)
|
||
case len(work) < lwork:
|
||
panic(shortWork)
|
||
}
|
||
var minwrk int
|
||
if wantvl || wantvr {
|
||
minwrk = max(1, 4*n)
|
||
} else {
|
||
minwrk = max(1, 3*n)
|
||
}
|
||
if lwork != -1 {
|
||
checkMatrix(n, n, a, lda)
|
||
if wantvl {
|
||
checkMatrix(n, n, vl, ldvl)
|
||
}
|
||
if wantvr {
|
||
checkMatrix(n, n, vr, ldvr)
|
||
}
|
||
switch {
|
||
case len(wr) != n:
|
||
panic("lapack: bad length of wr")
|
||
case len(wi) != n:
|
||
panic("lapack: bad length of wi")
|
||
case lwork < minwrk:
|
||
panic(badWork)
|
||
}
|
||
}
|
||
|
||
// Quick return if possible.
|
||
if n == 0 {
|
||
work[0] = 1
|
||
return 0
|
||
}
|
||
|
||
first = lapacke.Dgeev(lapack.Job(jobvl), lapack.Job(jobvr), n, a, max(n, lda), wr, wi,
|
||
vl, max(n, ldvl), vr, max(n, ldvr), work, lwork)
|
||
if lwork == -1 && int(work[0]) < minwrk {
|
||
work[0] = float64(minwrk)
|
||
}
|
||
return first
|
||
}
|
||
|
||
// Dtgsja computes the generalized singular value decomposition (GSVD)
|
||
// of two real upper triangular or trapezoidal matrices A and B.
|
||
//
|
||
// A and B have the following forms, which may be obtained by the
|
||
// preprocessing subroutine Dggsvp from a general m×n matrix A and p×n
|
||
// matrix B:
|
||
//
|
||
// n-k-l k l
|
||
// A = k [ 0 A12 A13 ] if m-k-l >= 0;
|
||
// l [ 0 0 A23 ]
|
||
// m-k-l [ 0 0 0 ]
|
||
//
|
||
// n-k-l k l
|
||
// A = k [ 0 A12 A13 ] if m-k-l < 0;
|
||
// m-k [ 0 0 A23 ]
|
||
//
|
||
// n-k-l k l
|
||
// B = l [ 0 0 B13 ]
|
||
// p-l [ 0 0 0 ]
|
||
//
|
||
// where the k×k matrix A12 and l×l matrix B13 are non-singular
|
||
// upper triangular. A23 is l×l upper triangular if m-k-l >= 0,
|
||
// otherwise A23 is (m-k)×l upper trapezoidal.
|
||
//
|
||
// On exit,
|
||
//
|
||
// U^T*A*Q = D1*[ 0 R ], V^T*B*Q = D2*[ 0 R ],
|
||
//
|
||
// where U, V and Q are orthogonal matrices.
|
||
// R is a non-singular upper triangular matrix, and D1 and D2 are
|
||
// diagonal matrices, which are of the following structures:
|
||
//
|
||
// If m-k-l >= 0,
|
||
//
|
||
// k l
|
||
// D1 = k [ I 0 ]
|
||
// l [ 0 C ]
|
||
// m-k-l [ 0 0 ]
|
||
//
|
||
// k l
|
||
// D2 = l [ 0 S ]
|
||
// p-l [ 0 0 ]
|
||
//
|
||
// n-k-l k l
|
||
// [ 0 R ] = k [ 0 R11 R12 ] k
|
||
// l [ 0 0 R22 ] l
|
||
//
|
||
// where
|
||
//
|
||
// C = diag( alpha_k, ... , alpha_{k+l} ),
|
||
// S = diag( beta_k, ... , beta_{k+l} ),
|
||
// C^2 + S^2 = I.
|
||
//
|
||
// R is stored in
|
||
// A[0:k+l, n-k-l:n]
|
||
// on exit.
|
||
//
|
||
// If m-k-l < 0,
|
||
//
|
||
// k m-k k+l-m
|
||
// D1 = k [ I 0 0 ]
|
||
// m-k [ 0 C 0 ]
|
||
//
|
||
// k m-k k+l-m
|
||
// D2 = m-k [ 0 S 0 ]
|
||
// k+l-m [ 0 0 I ]
|
||
// p-l [ 0 0 0 ]
|
||
//
|
||
// n-k-l k m-k k+l-m
|
||
// [ 0 R ] = k [ 0 R11 R12 R13 ]
|
||
// m-k [ 0 0 R22 R23 ]
|
||
// k+l-m [ 0 0 0 R33 ]
|
||
//
|
||
// where
|
||
// C = diag( alpha_k, ... , alpha_m ),
|
||
// S = diag( beta_k, ... , beta_m ),
|
||
// C^2 + S^2 = I.
|
||
//
|
||
// R = [ R11 R12 R13 ] is stored in A[1:m, n-k-l+1:n]
|
||
// [ 0 R22 R23 ]
|
||
// and R33 is stored in
|
||
// B[m-k:l, n+m-k-l:n] on exit.
|
||
//
|
||
// The computation of the orthogonal transformation matrices U, V or Q
|
||
// is optional. These matrices may either be formed explicitly, or they
|
||
// may be post-multiplied into input matrices U1, V1, or Q1.
|
||
//
|
||
// Dtgsja essentially uses a variant of Kogbetliantz algorithm to reduce
|
||
// min(l,m-k)×l triangular or trapezoidal matrix A23 and l×l
|
||
// matrix B13 to the form:
|
||
//
|
||
// U1^T*A13*Q1 = C1*R1; V1^T*B13*Q1 = S1*R1,
|
||
//
|
||
// where U1, V1 and Q1 are orthogonal matrices. C1 and S1 are diagonal
|
||
// matrices satisfying
|
||
//
|
||
// C1^2 + S1^2 = I,
|
||
//
|
||
// and R1 is an l×l non-singular upper triangular matrix.
|
||
//
|
||
// jobU, jobV and jobQ are options for computing the orthogonal matrices. The behavior
|
||
// is as follows
|
||
// jobU == lapack.GSVDU Compute orthogonal matrix U
|
||
// jobU == lapack.GSVDUnit Use unit-initialized matrix
|
||
// jobU == lapack.GSVDNone Do not compute orthogonal matrix.
|
||
// The behavior is the same for jobV and jobQ with the exception that instead of
|
||
// lapack.GSVDU these accept lapack.GSVDV and lapack.GSVDQ respectively.
|
||
// The matrices U, V and Q must be m×m, p×p and n×n respectively unless the
|
||
// relevant job parameter is lapack.GSVDNone.
|
||
//
|
||
// k and l specify the sub-blocks in the input matrices A and B:
|
||
// A23 = A[k:min(k+l,m), n-l:n) and B13 = B[0:l, n-l:n]
|
||
// of A and B, whose GSVD is going to be computed by Dtgsja.
|
||
//
|
||
// tola and tolb are the convergence criteria for the Jacobi-Kogbetliantz
|
||
// iteration procedure. Generally, they are the same as used in the preprocessing
|
||
// step, for example,
|
||
// tola = max(m, n)*norm(A)*eps,
|
||
// tolb = max(p, n)*norm(B)*eps,
|
||
// where eps is the machine epsilon.
|
||
//
|
||
// work must have length at least 2*n, otherwise Dtgsja will panic.
|
||
//
|
||
// alpha and beta must have length n or Dtgsja will panic. On exit, alpha and
|
||
// beta contain the generalized singular value pairs of A and B
|
||
// alpha[0:k] = 1,
|
||
// beta[0:k] = 0,
|
||
// if m-k-l >= 0,
|
||
// alpha[k:k+l] = diag(C),
|
||
// beta[k:k+l] = diag(S),
|
||
// if m-k-l < 0,
|
||
// alpha[k:m]= C, alpha[m:k+l]= 0
|
||
// beta[k:m] = S, beta[m:k+l] = 1.
|
||
// if k+l < n,
|
||
// alpha[k+l:n] = 0 and
|
||
// beta[k+l:n] = 0.
|
||
//
|
||
// On exit, A[n-k:n, 0:min(k+l,m)] contains the triangular matrix R or part of R
|
||
// and if necessary, B[m-k:l, n+m-k-l:n] contains a part of R.
|
||
//
|
||
// Dtgsja returns whether the routine converged and the number of iteration cycles
|
||
// that were run.
|
||
//
|
||
// Dtgsja is an internal routine. It is exported for testing purposes.
|
||
func (impl Implementation) Dtgsja(jobU, jobV, jobQ lapack.GSVDJob, m, p, n, k, l int, a []float64, lda int, b []float64, ldb int, tola, tolb float64, alpha, beta, u []float64, ldu int, v []float64, ldv int, q []float64, ldq int, work []float64) (cycles int, ok bool) {
|
||
checkMatrix(m, n, a, lda)
|
||
checkMatrix(p, n, b, ldb)
|
||
|
||
if len(alpha) != n {
|
||
panic(badAlpha)
|
||
}
|
||
if len(beta) != n {
|
||
panic(badBeta)
|
||
}
|
||
|
||
initu := jobU == lapack.GSVDUnit
|
||
wantu := initu || jobU == lapack.GSVDU
|
||
if !initu && !wantu && jobU != lapack.GSVDNone {
|
||
panic(badGSVDJob + "U")
|
||
}
|
||
if jobU != lapack.GSVDNone {
|
||
checkMatrix(m, m, u, ldu)
|
||
}
|
||
|
||
initv := jobV == lapack.GSVDUnit
|
||
wantv := initv || jobV == lapack.GSVDV
|
||
if !initv && !wantv && jobV != lapack.GSVDNone {
|
||
panic(badGSVDJob + "V")
|
||
}
|
||
if jobV != lapack.GSVDNone {
|
||
checkMatrix(p, p, v, ldv)
|
||
}
|
||
|
||
initq := jobQ == lapack.GSVDUnit
|
||
wantq := initq || jobQ == lapack.GSVDQ
|
||
if !initq && !wantq && jobQ != lapack.GSVDNone {
|
||
panic(badGSVDJob + "Q")
|
||
}
|
||
if jobQ != lapack.GSVDNone {
|
||
checkMatrix(n, n, q, ldq)
|
||
}
|
||
|
||
if len(work) < 2*n {
|
||
panic(badWork)
|
||
}
|
||
|
||
ncycle := []int32{0}
|
||
ok = lapacke.Dtgsja(lapack.Job(jobU), lapack.Job(jobV), lapack.Job(jobQ), m, p, n, k, l, a, lda, b, ldb, tola, tolb, alpha, beta, u, ldu, v, ldv, q, ldq, work, ncycle)
|
||
return int(ncycle[0]), ok
|
||
}
|