Files
gonum/distmv/normal_test.go
2015-09-20 23:06:46 -06:00

99 lines
1.9 KiB
Go

package distmv
import (
"testing"
"github.com/gonum/floats"
"github.com/gonum/matrix/mat64"
"github.com/gonum/stat"
)
type mvTest struct {
Mu []float64
Sigma *mat64.SymDense
Loc []float64
Logprob float64
Prob float64
}
func TestNormProbs(t *testing.T) {
dist1, ok := NewNormal([]float64{0, 0}, mat64.NewSymDense(2, []float64{1, 0, 0, 1}), nil)
if !ok {
t.Errorf("bad test")
}
dist2, ok := NewNormal([]float64{6, 7}, mat64.NewSymDense(2, []float64{8, 2, 0, 4}), nil)
if !ok {
t.Errorf("bad test")
}
testProbability(t, []probCase{
{
dist: dist1,
loc: []float64{0, 0},
logProb: -1.837877066409345,
},
{
dist: dist2,
loc: []float64{6, 7},
logProb: -3.503979321496947,
},
{
dist: dist2,
loc: []float64{1, 2},
logProb: -7.075407892925519,
},
})
}
func TestNormRand(t *testing.T) {
for _, test := range []struct {
mean []float64
cov []float64
}{
{
mean: []float64{0, 0},
cov: []float64{
1, 0,
0, 1,
},
},
{
mean: []float64{0, 0},
cov: []float64{
1, 0.9,
0.9, 1,
},
},
{
mean: []float64{6, 7},
cov: []float64{
5, 0.9,
0.9, 2,
},
},
} {
dim := len(test.mean)
cov := mat64.NewSymDense(dim, test.cov)
n, ok := NewNormal(test.mean, cov, nil)
if !ok {
t.Errorf("bad covariance matrix")
}
nSamples := 1000000
samps := mat64.NewDense(nSamples, dim, nil)
for i := 0; i < nSamples; i++ {
n.Rand(samps.RawRowView(i))
}
estMean := make([]float64, dim)
for i := range estMean {
estMean[i] = stat.Mean(samps.Col(nil, i), nil)
}
if !floats.EqualApprox(estMean, test.mean, 1e-2) {
t.Errorf("Mean mismatch: want: %v, got %v", test.mean, estMean)
}
estCov := stat.CovarianceMatrix(nil, samps, nil)
if !mat64.EqualApprox(estCov, cov, 1e-2) {
t.Errorf("Cov mismatch: want: %v, got %v", cov, estCov)
}
}
}