Files
gonum/spatial/r3/vector.go
Sebastien Binet 3199e478a1 spatial/r3: harmonize Vec API with num/quat.Number
Migration to the new API can be achieved with this rsc.io/rf script:

```
rf ex {
	import "gonum.org/v1/gonum/spatial/r3";
	var p,q r3.Vec;
	var f float64;

	p.Add(q) -> r3.Add(p, q);
	p.Sub(q) -> r3.Sub(p, q);
	p.Scale(f) -> r3.Scale(f, p);
	p.Dot(q) -> r3.Dot(p, q);
	p.Cross(q) -> r3.Cross(p, q);
	p.Rotate(f, q) -> r3.Rotate(p, f, q);
}
```

Updates gonum/gonum#1553.
2021-01-29 12:39:42 +01:00

141 lines
3.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2019 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package r3
import (
"math"
"gonum.org/v1/gonum/num/quat"
)
// Vec is a 3D vector.
type Vec struct {
X, Y, Z float64
}
// Add returns the vector sum of p and q.
func Add(p, q Vec) Vec {
return Vec{
X: p.X + q.X,
Y: p.Y + q.Y,
Z: p.Z + q.Z,
}
}
// Sub returns the vector sum of p and -q.
func Sub(p, q Vec) Vec {
return Vec{
X: p.X - q.X,
Y: p.Y - q.Y,
Z: p.Z - q.Z,
}
}
// Scale returns the vector p scaled by f.
func Scale(f float64, p Vec) Vec {
return Vec{
X: f * p.X,
Y: f * p.Y,
Z: f * p.Z,
}
}
// Dot returns the dot product p·q.
func Dot(p, q Vec) float64 {
return p.X*q.X + p.Y*q.Y + p.Z*q.Z
}
// Cross returns the cross product p×q.
func Cross(p, q Vec) Vec {
return Vec{
p.Y*q.Z - p.Z*q.Y,
p.Z*q.X - p.X*q.Z,
p.X*q.Y - p.Y*q.X,
}
}
// Rotate returns a new vector, rotated by alpha around the provided axis.
func Rotate(p Vec, alpha float64, axis Vec) Vec {
return NewRotation(alpha, axis).Rotate(p)
}
// Norm returns the Euclidean norm of p
// |p| = sqrt(p_x^2 + p_y^2 + p_z^2).
func Norm(p Vec) float64 {
return math.Hypot(p.X, math.Hypot(p.Y, p.Z))
}
// Norm returns the Euclidean squared norm of p
// |p|^2 = p_x^2 + p_y^2 + p_z^2.
func Norm2(p Vec) float64 {
return p.X*p.X + p.Y*p.Y + p.Z*p.Z
}
// Unit returns the unit vector colinear to p.
// Unit returns {NaN,NaN,NaN} for the zero vector.
func Unit(p Vec) Vec {
if p.X == 0 && p.Y == 0 && p.Z == 0 {
return Vec{X: math.NaN(), Y: math.NaN(), Z: math.NaN()}
}
return Scale(1/Norm(p), p)
}
// Cos returns the cosine of the opening angle between p and q.
func Cos(p, q Vec) float64 {
return Dot(p, q) / (Norm(p) * Norm(q))
}
// Box is a 3D bounding box.
type Box struct {
Min, Max Vec
}
// TODO: possibly useful additions to the current rotation API:
// - create rotations from Euler angles (NewRotationFromEuler?)
// - create rotations from rotation matrices (NewRotationFromMatrix?)
// - return the equivalent Euler angles from a Rotation
// - return the equivalent rotation matrix from a Rotation
//
// Euler angles have issues (see [1] for a discussion).
// We should think carefully before adding them in.
// [1]: http://www.euclideanspace.com/maths/geometry/rotations/conversions/quaternionToEuler/
// Rotation describes a rotation in space.
type Rotation quat.Number
// NewRotation creates a rotation by alpha, around axis.
func NewRotation(alpha float64, axis Vec) Rotation {
if alpha == 0 {
return Rotation{Real: 1}
}
q := raise(axis)
sin, cos := math.Sincos(0.5 * alpha)
q = quat.Scale(sin/quat.Abs(q), q)
q.Real += cos
if len := quat.Abs(q); len != 1 {
q = quat.Scale(1/len, q)
}
return Rotation(q)
}
// Rotate returns the rotated vector according to the definition of rot.
func (r Rotation) Rotate(p Vec) Vec {
if r.isIdentity() {
return p
}
qq := quat.Number(r)
pp := quat.Mul(quat.Mul(qq, raise(p)), quat.Conj(qq))
return Vec{X: pp.Imag, Y: pp.Jmag, Z: pp.Kmag}
}
func (r Rotation) isIdentity() bool {
return r == Rotation{Real: 1}
}
func raise(p Vec) quat.Number {
return quat.Number{Imag: p.X, Jmag: p.Y, Kmag: p.Z}
}