mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 23:02:42 +08:00

Apply (with manual curation after the fact): * s/^T/U+1d40/g * s/^H/U+1d34/g * s/, {2,3}if / $1/g Some additional manual editing of odd formatting.
97 lines
2.7 KiB
Go
97 lines
2.7 KiB
Go
// Copyright ©2019 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package testlapack
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
"testing"
|
|
|
|
"golang.org/x/exp/rand"
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
"gonum.org/v1/gonum/blas/blas64"
|
|
"gonum.org/v1/gonum/floats"
|
|
)
|
|
|
|
type Dpbtrser interface {
|
|
Dpbtrs(uplo blas.Uplo, n, kd, nrhs int, ab []float64, ldab int, b []float64, ldb int)
|
|
|
|
Dpbtrfer
|
|
}
|
|
|
|
// DpbtrsTest tests Dpbtrs by comparing the computed and known, generated solutions of
|
|
// a linear system with a random symmetric positive definite band matrix.
|
|
func DpbtrsTest(t *testing.T, impl Dpbtrser) {
|
|
rnd := rand.New(rand.NewSource(1))
|
|
for _, n := range []int{0, 1, 2, 3, 4, 5, 65, 100, 129} {
|
|
for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} {
|
|
for _, nrhs := range []int{0, 1, 2, 5} {
|
|
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
|
|
for _, ldab := range []int{kd + 1, kd + 1 + 3} {
|
|
for _, ldb := range []int{max(1, nrhs), nrhs + 4} {
|
|
dpbtrsTest(t, impl, rnd, uplo, n, kd, nrhs, ldab, ldb)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func dpbtrsTest(t *testing.T, impl Dpbtrser, rnd *rand.Rand, uplo blas.Uplo, n, kd, nrhs int, ldab, ldb int) {
|
|
const tol = 1e-12
|
|
|
|
name := fmt.Sprintf("uplo=%v,n=%v,kd=%v,nrhs=%v,ldab=%v,ldb=%v", string(uplo), n, kd, nrhs, ldab, ldb)
|
|
|
|
// Generate a random symmetric positive definite band matrix.
|
|
ab := randSymBand(uplo, n, kd, ldab, rnd)
|
|
|
|
// Compute the Cholesky decomposition of A.
|
|
abFac := make([]float64, len(ab))
|
|
copy(abFac, ab)
|
|
ok := impl.Dpbtrf(uplo, n, kd, abFac, ldab)
|
|
if !ok {
|
|
t.Fatalf("%v: bad test matrix, Dpbtrs failed", name)
|
|
}
|
|
abFacCopy := make([]float64, len(abFac))
|
|
copy(abFacCopy, abFac)
|
|
|
|
// Generate a random solution.
|
|
xWant := make([]float64, n*ldb)
|
|
for i := range xWant {
|
|
xWant[i] = rnd.NormFloat64()
|
|
}
|
|
|
|
// Compute the corresponding right-hand side.
|
|
bi := blas64.Implementation()
|
|
b := make([]float64, len(xWant))
|
|
if n > 0 {
|
|
for j := 0; j < nrhs; j++ {
|
|
bi.Dsbmv(uplo, n, kd, 1, ab, ldab, xWant[j:], ldb, 0, b[j:], ldb)
|
|
}
|
|
}
|
|
|
|
// Solve Uᵀ * U * X = B or L * Lᵀ * X = B.
|
|
impl.Dpbtrs(uplo, n, kd, nrhs, abFac, ldab, b, ldb)
|
|
xGot := b
|
|
|
|
// Check that the Cholesky factorization matrix has not been modified.
|
|
if !floats.Equal(abFac, abFacCopy) {
|
|
t.Errorf("%v: unexpected modification of ab", name)
|
|
}
|
|
|
|
// Compute and check the max-norm difference between the computed and generated solutions.
|
|
var diff float64
|
|
for i := 0; i < n; i++ {
|
|
for j := 0; j < nrhs; j++ {
|
|
diff = math.Max(diff, math.Abs(xWant[i*ldb+j]-xGot[i*ldb+j]))
|
|
}
|
|
}
|
|
if diff > tol {
|
|
t.Errorf("%v: unexpected result, diff=%v", name, diff)
|
|
}
|
|
}
|