Files
gonum/native/dpotrf.go
btracey ec100cf00f Working implementation of blocked QR
Improved function documentation

Fixed dlarfb and dlarft and added full tests

Added dgelq2

Working Dgels

Fix many comments and tests

Many PR comment responses

Responded to more PR comments

Many PR comments
2015-07-15 00:43:15 -07:00

76 lines
2.0 KiB
Go

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package native
import (
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
)
// Dpotrf computes the cholesky decomposition of the symmetric positive definite
// matrix a. If ul == blas.Upper, then a is stored as an upper-triangular matrix,
// and a = U U^T is stored in place into a. If ul == blas.Lower, then a = L L^T
// is computed and stored in-place into a. If a is not positive definite, false
// is returned. This is the blocked version of the algorithm.
func (impl Implementation) Dpotrf(ul blas.Uplo, n int, a []float64, lda int) (ok bool) {
bi := blas64.Implementation()
if ul != blas.Upper && ul != blas.Lower {
panic(badUplo)
}
if n < 0 {
panic(nLT0)
}
if lda < n {
panic(badLdA)
}
if n == 0 {
return true
}
nb := impl.Ilaenv(1, "DPOTRF", string(ul), n, -1, -1, -1)
if n <= nb {
return impl.Dpotf2(ul, n, a, lda)
}
if ul == blas.Upper {
for j := 0; j < n; j += nb {
jb := min(nb, n-j)
bi.Dsyrk(blas.Upper, blas.Trans, jb, j,
-1, a[j:], lda,
1, a[j*lda+j:], lda)
ok = impl.Dpotf2(blas.Upper, jb, a[j*lda+j:], lda)
if !ok {
return ok
}
if j+jb < n {
bi.Dgemm(blas.Trans, blas.NoTrans, jb, n-j-jb, j,
-1, a[j:], lda, a[j+jb:], lda,
1, a[j*lda+j+jb:], lda)
bi.Dtrsm(blas.Left, blas.Upper, blas.Trans, blas.NonUnit, jb, n-j-jb,
1, a[j*lda+j:], lda,
a[j*lda+j+jb:], lda)
}
}
return true
}
for j := 0; j < n; j += nb {
jb := min(nb, n-j)
bi.Dsyrk(blas.Lower, blas.NoTrans, jb, j,
-1, a[j*lda:], lda,
1, a[j*lda+j:], lda)
ok := impl.Dpotf2(blas.Lower, jb, a[j*lda+j:], lda)
if !ok {
return ok
}
if j+jb < n {
bi.Dgemm(blas.NoTrans, blas.Trans, n-j-jb, jb, j,
-1, a[(j+jb)*lda:], lda, a[j*lda:], lda,
1, a[(j+jb)*lda+j:], lda)
bi.Dtrsm(blas.Right, blas.Lower, blas.Trans, blas.NonUnit, n-j-jb, jb,
1, a[j*lda+j:], lda,
a[(j+jb)*lda+j:], lda)
}
}
return true
}