Files
gonum/lapack64/lapack64.go
Brendan Tracey 2eb39c45f4 Merge pull request #32 from gonum/qrlqsolve
Add cgo and lapack64 functions for performing a QR and LQ solve from …
2015-08-11 08:14:19 -06:00

215 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Package lapack64 provides a set of convenient wrapper functions for LAPACK
// calls, as specified in the netlib standard (www.netlib.org).
//
// The native Go routines are used by default, and the Use function can be used
// to set an alternate implementation.
//
// If the type of matrix (General, Symmetric, etc.) is known and fixed, it is
// used in the wrapper signature. In many cases, however, the type of the matrix
// changes during the call to the routine, for example the matrix is symmetric on
// entry and is triangular on exit. In these cases the correct types should be checked
// in the documentation.
//
// The full set of Lapack functions is very large, and it is not clear that a
// full implementation is desirable, let alone feasible. Please open up an issue
// if there is a specific function you need and/or are willing to implement.
package lapack64
import (
"github.com/gonum/blas"
"github.com/gonum/blas/blas64"
"github.com/gonum/lapack"
"github.com/gonum/lapack/native"
)
var lapack64 lapack.Float64 = native.Implementation{}
// Use sets the LAPACK float64 implementation to be used by subsequent BLAS calls.
// The default implementation is native.Implementation.
func Use(l lapack.Float64) {
lapack64 = l
}
// Potrf computes the cholesky factorization of a.
// A = U^T * U if ul == blas.Upper
// A = L * L^T if ul == blas.Lower
// The underlying data between the input matrix and output matrix is shared.
func Potrf(a blas64.Symmetric) (t blas64.Triangular, ok bool) {
ok = lapack64.Dpotrf(a.Uplo, a.N, a.Data, a.Stride)
t.Uplo = a.Uplo
t.N = a.N
t.Data = a.Data
t.Stride = a.Stride
t.Diag = blas.NonUnit
return
}
// Gels finds a minimum-norm solution based on the matrices A and B using the
// QR or LQ factorization. Dgels returns false if the matrix
// A is singular, and true if this solution was successfully found.
//
// The minimization problem solved depends on the input parameters.
//
// 1. If m >= n and trans == blas.NoTrans, Dgels finds X such that || A*X - B||_2
// is minimized.
// 2. If m < n and trans == blas.NoTrans, Dgels finds the minimum norm solution of
// A * X = B.
// 3. If m >= n and trans == blas.Trans, Dgels finds the minimum norm solution of
// A^T * X = B.
// 4. If m < n and trans == blas.Trans, Dgels finds X such that || A*X - B||_2
// is minimized.
// Note that the least-squares solutions (cases 1 and 3) perform the minimization
// per column of B. This is not the same as finding the minimum-norm matrix.
//
// The matrix A is a general matrix of size m×n and is modified during this call.
// The input matrix B is of size max(m,n)×nrhs, and serves two purposes. On entry,
// the elements of b specify the input matrix B. B has size m×nrhs if
// trans == blas.NoTrans, and n×nrhs if trans == blas.Trans. On exit, the
// leading submatrix of b contains the solution vectors X. If trans == blas.NoTrans,
// this submatrix is of size n×nrhs, and of size m×nrhs otherwise.
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= max(m,n) + max(m,n,nrhs), and this function will panic
// otherwise. A longer work will enable blocked algorithms to be called.
// In the special case that lwork == -1, work[0] will be set to the optimal working
// length.
func Gels(trans blas.Transpose, a blas64.General, b blas64.General, work []float64, lwork int) bool {
return lapack64.Dgels(trans, a.Rows, a.Cols, b.Cols, a.Data, a.Stride, b.Data, b.Stride, work, lwork)
}
// Geqrf computes the QR factorization of the m×n matrix A using a blocked
// algorithm. A is modified to contain the information to construct Q and R.
// The upper triangle of a contains the matrix R. The lower triangular elements
// (not including the diagonal) contain the elementary reflectors. Tau is modified
// to contain the reflector scales. Tau must have length at least min(m,n), and
// this function will panic otherwise.
//
// The ith elementary reflector can be explicitly constructed by first extracting
// the
// v[j] = 0 j < i
// v[j] = i j == i
// v[j] = a[i*lda+j] j > i
// and computing h_i = I - tau[i] * v * v^T.
//
// The orthonormal matrix Q can be constucted from a product of these elementary
// reflectors, Q = H_1*H_2 ... H_k, where k = min(m,n).
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= m and this function will panic otherwise.
// Dgeqrf is a blocked QR factorization, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Geqrf,
// the optimal work length will be stored into work[0].
func Geqrf(a blas64.General, tau, work []float64, lwork int) {
lapack64.Dgeqrf(a.Rows, a.Cols, a.Data, a.Stride, tau, work, lwork)
}
// Gelqf computes the QR factorization of the m×n matrix A using a blocked
// algorithm. A is modified to contain the information to construct L and Q.
// The lower triangle of a contains the matrix L. The lower triangular elements
// (not including the diagonal) contain the elementary reflectors. Tau is modified
// to contain the reflector scales. Tau must have length at least min(m,n), and
// this function will panic otherwise.
//
// See Geqrf for a description of the elementary reflectors and orthonormal
// matrix Q. Q is constructed as a product of these elementary reflectors,
// Q = H_k ... H_2*H_1.
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= m and this function will panic otherwise.
// Dgeqrf is a blocked LQ factorization, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Gelqf,
// the optimal work length will be stored into work[0].
func Gelqf(a blas64.General, tau, work []float64, lwork int) {
lapack64.Dgelqf(a.Rows, a.Cols, a.Data, a.Stride, tau, work, lwork)
}
// Getrf computes the LU decomposition of the m×n matrix A.
// The LU decomposition is a factorization of A into
// A = P * L * U
// where P is a permutation matrix, L is a unit lower triangular matrix, and
// U is a (usually) non-unit upper triangular matrix. On exit, L and U are stored
// in place into a.
//
// ipiv is a permutation vector. It indicates that row i of the matrix was
// changed with ipiv[i]. ipiv must have length at least min(m,n), and will panic
// otherwise. ipiv is zero-indexed.
//
// Dgetrf is the blocked version of the algorithm.
//
// Dgetrf returns whether the matrix A is singular. The LU decomposition will
// be computed regardless of the singularity of A, but division by zero
// will occur if the false is returned and the result is used to solve a
// system of equations.
func Getrf(a blas64.General, ipiv []int) bool {
return lapack64.Dgetrf(a.Rows, a.Cols, a.Data, a.Stride, ipiv)
}
// Dgetrs solves a system of equations using an LU factorization.
// The system of equations solved is
// A * X = B if trans == blas.Trans
// A^T * X = B if trans == blas.NoTrans
// A is a general n×n matrix with stride lda. B is a general matrix of size n×nrhs.
//
// On entry b contains the elements of the matrix B. On exit, b contains the
// elements of X, the solution to the system of equations.
//
// a and ipiv contain the LU factorization of A and the permutation indices as
// computed by Getrf. ipiv is zero-indexed.
func Getrs(trans blas.Transpose, a blas64.General, b blas64.General, ipiv []int) {
lapack64.Dgetrs(trans, a.Cols, b.Cols, a.Data, a.Stride, ipiv, b.Data, b.Stride)
}
// Ormlq multiplies the matrix C by the othogonal matrix Q defined by
// A and tau. A and tau are as returned from Gelqf.
// C = Q * C if side == blas.Left and trans == blas.NoTrans
// C = Q^T * C if side == blas.Left and trans == blas.Trans
// C = C * Q if side == blas.Right and trans == blas.NoTrans
// C = C * Q^T if side == blas.Right and trans == blas.Trans
// If side == blas.Left, A is a matrix of side k×m, and if side == blas.Right
// A is of size k×n. This uses a blocked algorithm.
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= m if side == blas.Left and lwork >= n if side == blas.Right,
// and this function will panic otherwise.
// Ormlq uses a block algorithm, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Ormlq,
// the optimal work length will be stored into work[0].
//
// Tau contains the householder scales and must have length at least k, and
// this function will panic otherwise.
func Ormlq(side blas.Side, trans blas.Transpose, a blas64.General, tau []float64, c blas64.General, work []float64, lwork int) {
lapack64.Dormlq(side, trans, c.Rows, c.Cols, a.Rows, a.Data, a.Stride, tau, c.Data, c.Stride, work, lwork)
}
// Ormqr multiplies the matrix C by the othogonal matrix Q defined by
// A and tau. A and tau are as returned from Geqrf.
// C = Q * C if side == blas.Left and trans == blas.NoTrans
// C = Q^T * C if side == blas.Left and trans == blas.Trans
// C = C * Q if side == blas.Right and trans == blas.NoTrans
// C = C * Q^T if side == blas.Right and trans == blas.Trans
// If side == blas.Left, A is a matrix of side k×m, and if side == blas.Right
// A is of size k×n. This uses a blocked algorithm.
//
// tau contains the householder scales and must have length at least k, and
// this function will panic otherwise.
//
// Work is temporary storage, and lwork specifies the usable memory length.
// At minimum, lwork >= m if side == blas.Left and lwork >= n if side == blas.Right,
// and this function will panic otherwise.
// Ormqr uses a block algorithm, but the block size is limited
// by the temporary space available. If lwork == -1, instead of performing Ormqr,
// the optimal work length will be stored into work[0].
func Ormqr(side blas.Side, trans blas.Transpose, a blas64.General, tau []float64, c blas64.General, work []float64, lwork int) {
lapack64.Dormqr(side, trans, c.Rows, c.Cols, a.Cols, a.Data, a.Stride, tau, c.Data, c.Stride, work, lwork)
}
// Trtrs solves a triangular system of the form A * X = B or A^T * X = B. Trtrs
// returns whether the solve completed successfully. If A is singular, no solve is performed.
func Trtrs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, a blas64.Triangular, b blas64.General) (ok bool) {
return lapack64.Dtrtrs(uplo, trans, diag, a.N, b.Cols, a.Data, a.Stride, b.Data, b.Stride)
}