mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-31 10:36:30 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			180 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
			
		
		
	
	
			180 lines
		
	
	
		
			4.9 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
| *> \brief \b DLAQR1 sets a scalar multiple of the first column of the product of 2-by-2 or 3-by-3 matrix H and specified shifts.
 | |
| *
 | |
| *  =========== DOCUMENTATION ===========
 | |
| *
 | |
| * Online html documentation available at 
 | |
| *            http://www.netlib.org/lapack/explore-html/ 
 | |
| *
 | |
| *> \htmlonly
 | |
| *> Download DLAQR1 + dependencies 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.tgz?format=tgz&filename=/lapack/lapack_routine/dlaqr1.f"> 
 | |
| *> [TGZ]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.zip?format=zip&filename=/lapack/lapack_routine/dlaqr1.f"> 
 | |
| *> [ZIP]</a> 
 | |
| *> <a href="http://www.netlib.org/cgi-bin/netlibfiles.txt?format=txt&filename=/lapack/lapack_routine/dlaqr1.f"> 
 | |
| *> [TXT]</a>
 | |
| *> \endhtmlonly 
 | |
| *
 | |
| *  Definition:
 | |
| *  ===========
 | |
| *
 | |
| *       SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
 | |
| * 
 | |
| *       .. Scalar Arguments ..
 | |
| *       DOUBLE PRECISION   SI1, SI2, SR1, SR2
 | |
| *       INTEGER            LDH, N
 | |
| *       ..
 | |
| *       .. Array Arguments ..
 | |
| *       DOUBLE PRECISION   H( LDH, * ), V( * )
 | |
| *       ..
 | |
| *  
 | |
| *
 | |
| *> \par Purpose:
 | |
| *  =============
 | |
| *>
 | |
| *> \verbatim
 | |
| *>
 | |
| *>      Given a 2-by-2 or 3-by-3 matrix H, DLAQR1 sets v to a
 | |
| *>      scalar multiple of the first column of the product
 | |
| *>
 | |
| *>      (*)  K = (H - (sr1 + i*si1)*I)*(H - (sr2 + i*si2)*I)
 | |
| *>
 | |
| *>      scaling to avoid overflows and most underflows. It
 | |
| *>      is assumed that either
 | |
| *>
 | |
| *>              1) sr1 = sr2 and si1 = -si2
 | |
| *>          or
 | |
| *>              2) si1 = si2 = 0.
 | |
| *>
 | |
| *>      This is useful for starting double implicit shift bulges
 | |
| *>      in the QR algorithm.
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Arguments:
 | |
| *  ==========
 | |
| *
 | |
| *> \param[in] N
 | |
| *> \verbatim
 | |
| *>          N is integer
 | |
| *>              Order of the matrix H. N must be either 2 or 3.
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] H
 | |
| *> \verbatim
 | |
| *>          H is DOUBLE PRECISION array of dimension (LDH,N)
 | |
| *>              The 2-by-2 or 3-by-3 matrix H in (*).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] LDH
 | |
| *> \verbatim
 | |
| *>          LDH is integer
 | |
| *>              The leading dimension of H as declared in
 | |
| *>              the calling procedure.  LDH.GE.N
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SR1
 | |
| *> \verbatim
 | |
| *>          SR1 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SI1
 | |
| *> \verbatim
 | |
| *>          SI1 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SR2
 | |
| *> \verbatim
 | |
| *>          SR2 is DOUBLE PRECISION
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[in] SI2
 | |
| *> \verbatim
 | |
| *>          SI2 is DOUBLE PRECISION
 | |
| *>              The shifts in (*).
 | |
| *> \endverbatim
 | |
| *>
 | |
| *> \param[out] V
 | |
| *> \verbatim
 | |
| *>          V is DOUBLE PRECISION array of dimension N
 | |
| *>              A scalar multiple of the first column of the
 | |
| *>              matrix K in (*).
 | |
| *> \endverbatim
 | |
| *
 | |
| *  Authors:
 | |
| *  ========
 | |
| *
 | |
| *> \author Univ. of Tennessee 
 | |
| *> \author Univ. of California Berkeley 
 | |
| *> \author Univ. of Colorado Denver 
 | |
| *> \author NAG Ltd. 
 | |
| *
 | |
| *> \date September 2012
 | |
| *
 | |
| *> \ingroup doubleOTHERauxiliary
 | |
| *
 | |
| *> \par Contributors:
 | |
| *  ==================
 | |
| *>
 | |
| *>       Karen Braman and Ralph Byers, Department of Mathematics,
 | |
| *>       University of Kansas, USA
 | |
| *>
 | |
| *  =====================================================================
 | |
|       SUBROUTINE DLAQR1( N, H, LDH, SR1, SI1, SR2, SI2, V )
 | |
| *
 | |
| *  -- LAPACK auxiliary routine (version 3.4.2) --
 | |
| *  -- LAPACK is a software package provided by Univ. of Tennessee,    --
 | |
| *  -- Univ. of California Berkeley, Univ. of Colorado Denver and NAG Ltd..--
 | |
| *     September 2012
 | |
| *
 | |
| *     .. Scalar Arguments ..
 | |
|       DOUBLE PRECISION   SI1, SI2, SR1, SR2
 | |
|       INTEGER            LDH, N
 | |
| *     ..
 | |
| *     .. Array Arguments ..
 | |
|       DOUBLE PRECISION   H( LDH, * ), V( * )
 | |
| *     ..
 | |
| *
 | |
| *  ================================================================
 | |
| *
 | |
| *     .. Parameters ..
 | |
|       DOUBLE PRECISION   ZERO
 | |
|       PARAMETER          ( ZERO = 0.0d0 )
 | |
| *     ..
 | |
| *     .. Local Scalars ..
 | |
|       DOUBLE PRECISION   H21S, H31S, S
 | |
| *     ..
 | |
| *     .. Intrinsic Functions ..
 | |
|       INTRINSIC          ABS
 | |
| *     ..
 | |
| *     .. Executable Statements ..
 | |
|       IF( N.EQ.2 ) THEN
 | |
|          S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) )
 | |
|          IF( S.EQ.ZERO ) THEN
 | |
|             V( 1 ) = ZERO
 | |
|             V( 2 ) = ZERO
 | |
|          ELSE
 | |
|             H21S = H( 2, 1 ) / S
 | |
|             V( 1 ) = H21S*H( 1, 2 ) + ( H( 1, 1 )-SR1 )*
 | |
|      $               ( ( H( 1, 1 )-SR2 ) / S ) - SI1*( SI2 / S )
 | |
|             V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 )
 | |
|          END IF
 | |
|       ELSE
 | |
|          S = ABS( H( 1, 1 )-SR2 ) + ABS( SI2 ) + ABS( H( 2, 1 ) ) +
 | |
|      $       ABS( H( 3, 1 ) )
 | |
|          IF( S.EQ.ZERO ) THEN
 | |
|             V( 1 ) = ZERO
 | |
|             V( 2 ) = ZERO
 | |
|             V( 3 ) = ZERO
 | |
|          ELSE
 | |
|             H21S = H( 2, 1 ) / S
 | |
|             H31S = H( 3, 1 ) / S
 | |
|             V( 1 ) = ( H( 1, 1 )-SR1 )*( ( H( 1, 1 )-SR2 ) / S ) -
 | |
|      $               SI1*( SI2 / S ) + H( 1, 2 )*H21S + H( 1, 3 )*H31S
 | |
|             V( 2 ) = H21S*( H( 1, 1 )+H( 2, 2 )-SR1-SR2 ) +
 | |
|      $               H( 2, 3 )*H31S
 | |
|             V( 3 ) = H31S*( H( 1, 1 )+H( 3, 3 )-SR1-SR2 ) +
 | |
|      $               H21S*H( 3, 2 )
 | |
|          END IF
 | |
|       END IF
 | |
|       END
 | 
