mirror of
				https://github.com/gonum/gonum.git
				synced 2025-10-27 01:00:26 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			86 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			86 lines
		
	
	
		
			1.7 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| package testlapack
 | |
| 
 | |
| import (
 | |
| 	"math"
 | |
| 	"math/rand"
 | |
| 	"testing"
 | |
| 
 | |
| 	"github.com/gonum/blas"
 | |
| 	"github.com/gonum/blas/blas64"
 | |
| )
 | |
| 
 | |
| type Dgetrier interface {
 | |
| 	Dgetrfer
 | |
| 	Dgetri(n int, a []float64, lda int, ipiv []int, work []float64, lwork int) bool
 | |
| }
 | |
| 
 | |
| func DgetriTest(t *testing.T, impl Dgetrier) {
 | |
| 	rnd := rand.New(rand.NewSource(1))
 | |
| 	bi := blas64.Implementation()
 | |
| 	for _, test := range []struct {
 | |
| 		n, lda int
 | |
| 	}{
 | |
| 		{5, 0},
 | |
| 		{5, 8},
 | |
| 		{45, 0},
 | |
| 		{45, 50},
 | |
| 		{65, 0},
 | |
| 		{65, 70},
 | |
| 		{150, 0},
 | |
| 		{150, 250},
 | |
| 	} {
 | |
| 		n := test.n
 | |
| 		lda := test.lda
 | |
| 		if lda == 0 {
 | |
| 			lda = n
 | |
| 		}
 | |
| 		// Generate a random well conditioned matrix
 | |
| 		perm := rnd.Perm(n)
 | |
| 		a := make([]float64, n*lda)
 | |
| 		for i := 0; i < n; i++ {
 | |
| 			a[i*lda+perm[i]] = 1
 | |
| 		}
 | |
| 		for i := range a {
 | |
| 			a[i] += 0.01 * rnd.Float64()
 | |
| 		}
 | |
| 		aCopy := make([]float64, len(a))
 | |
| 		copy(aCopy, a)
 | |
| 		ipiv := make([]int, n)
 | |
| 		// Compute LU decomposition.
 | |
| 		impl.Dgetrf(n, n, a, lda, ipiv)
 | |
| 		// Compute inverse.
 | |
| 		work := make([]float64, 1)
 | |
| 		impl.Dgetri(n, a, lda, ipiv, work, -1)
 | |
| 		work = make([]float64, int(work[0]))
 | |
| 		lwork := len(work)
 | |
| 
 | |
| 		ok := impl.Dgetri(n, a, lda, ipiv, work, lwork)
 | |
| 		if !ok {
 | |
| 			t.Errorf("Unexpected singular matrix.")
 | |
| 		}
 | |
| 
 | |
| 		// Check that A(inv) * A = I.
 | |
| 		ans := make([]float64, len(a))
 | |
| 		bi.Dgemm(blas.NoTrans, blas.NoTrans, n, n, n, 1, aCopy, lda, a, lda, 0, ans, lda)
 | |
| 		isEye := true
 | |
| 		for i := 0; i < n; i++ {
 | |
| 			for j := 0; j < n; j++ {
 | |
| 				if i == j {
 | |
| 					// This tolerance is so high because computing matrix inverses
 | |
| 					// is very unstable.
 | |
| 					if math.Abs(ans[i*lda+j]-1) > 5e-2 {
 | |
| 						isEye = false
 | |
| 					}
 | |
| 				} else {
 | |
| 					if math.Abs(ans[i*lda+j]) > 5e-2 {
 | |
| 						isEye = false
 | |
| 					}
 | |
| 				}
 | |
| 			}
 | |
| 		}
 | |
| 		if !isEye {
 | |
| 			t.Errorf("Inv(A) * A != I. n = %v, lda = %v", n, lda)
 | |
| 		}
 | |
| 	}
 | |
| }
 | 
