mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 06:46:29 +08:00

* optimize: Remove Local function This change removes the Local function. In order to do so, this changes the previous LocalGlobal wrapper to LocalController to allow Local methods to be used as a Global optimizer. This adds methods to all of the Local methods in order to implement GlobalMethod, and changes the tests accordingly. The next commit will fix all of the names
180 lines
4.6 KiB
Go
180 lines
4.6 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package optimize
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/mat"
|
||
)
|
||
|
||
// BFGS implements the Broyden–Fletcher–Goldfarb–Shanno optimization method. It
|
||
// is a quasi-Newton method that performs successive rank-one updates to an
|
||
// estimate of the inverse Hessian of the objective function. It exhibits
|
||
// super-linear convergence when in proximity to a local minimum. It has memory
|
||
// cost that is O(n^2) relative to the input dimension.
|
||
type BFGS struct {
|
||
// Linesearcher selects suitable steps along the descent direction.
|
||
// Accepted steps should satisfy the strong Wolfe conditions.
|
||
// If Linesearcher == nil, an appropriate default is chosen.
|
||
Linesearcher Linesearcher
|
||
|
||
ls *LinesearchMethod
|
||
|
||
status Status
|
||
err error
|
||
|
||
dim int
|
||
x mat.VecDense // Location of the last major iteration.
|
||
grad mat.VecDense // Gradient at the last major iteration.
|
||
s mat.VecDense // Difference between locations in this and the previous iteration.
|
||
y mat.VecDense // Difference between gradients in this and the previous iteration.
|
||
tmp mat.VecDense
|
||
|
||
invHess *mat.SymDense
|
||
|
||
first bool // Indicator of the first iteration.
|
||
}
|
||
|
||
func (b *BFGS) Status() (Status, error) {
|
||
return b.status, b.err
|
||
}
|
||
|
||
func (b *BFGS) InitGlobal(dim, tasks int) int {
|
||
b.status = NotTerminated
|
||
b.err = nil
|
||
return 1
|
||
}
|
||
|
||
func (b *BFGS) RunGlobal(operation chan<- GlobalTask, result <-chan GlobalTask, tasks []GlobalTask) {
|
||
b.status, b.err = localOptimizer{}.runGlobal(b, operation, result, tasks)
|
||
close(operation)
|
||
return
|
||
}
|
||
|
||
func (b *BFGS) Init(loc *Location) (Operation, error) {
|
||
if b.Linesearcher == nil {
|
||
b.Linesearcher = &Bisection{}
|
||
}
|
||
if b.ls == nil {
|
||
b.ls = &LinesearchMethod{}
|
||
}
|
||
b.ls.Linesearcher = b.Linesearcher
|
||
b.ls.NextDirectioner = b
|
||
|
||
return b.ls.Init(loc)
|
||
}
|
||
|
||
func (b *BFGS) Iterate(loc *Location) (Operation, error) {
|
||
return b.ls.Iterate(loc)
|
||
}
|
||
|
||
func (b *BFGS) InitDirection(loc *Location, dir []float64) (stepSize float64) {
|
||
dim := len(loc.X)
|
||
b.dim = dim
|
||
b.first = true
|
||
|
||
x := mat.NewVecDense(dim, loc.X)
|
||
grad := mat.NewVecDense(dim, loc.Gradient)
|
||
b.x.CloneVec(x)
|
||
b.grad.CloneVec(grad)
|
||
|
||
b.y.Reset()
|
||
b.s.Reset()
|
||
b.tmp.Reset()
|
||
|
||
if b.invHess == nil || cap(b.invHess.RawSymmetric().Data) < dim*dim {
|
||
b.invHess = mat.NewSymDense(dim, nil)
|
||
} else {
|
||
b.invHess = mat.NewSymDense(dim, b.invHess.RawSymmetric().Data[:dim*dim])
|
||
}
|
||
// The values of the inverse Hessian are initialized in the first call to
|
||
// NextDirection.
|
||
|
||
// Initial direction is just negative of the gradient because the Hessian
|
||
// is an identity matrix.
|
||
d := mat.NewVecDense(dim, dir)
|
||
d.ScaleVec(-1, grad)
|
||
return 1 / mat.Norm(d, 2)
|
||
}
|
||
|
||
func (b *BFGS) NextDirection(loc *Location, dir []float64) (stepSize float64) {
|
||
dim := b.dim
|
||
if len(loc.X) != dim {
|
||
panic("bfgs: unexpected size mismatch")
|
||
}
|
||
if len(loc.Gradient) != dim {
|
||
panic("bfgs: unexpected size mismatch")
|
||
}
|
||
if len(dir) != dim {
|
||
panic("bfgs: unexpected size mismatch")
|
||
}
|
||
|
||
x := mat.NewVecDense(dim, loc.X)
|
||
grad := mat.NewVecDense(dim, loc.Gradient)
|
||
|
||
// s = x_{k+1} - x_{k}
|
||
b.s.SubVec(x, &b.x)
|
||
// y = g_{k+1} - g_{k}
|
||
b.y.SubVec(grad, &b.grad)
|
||
|
||
sDotY := mat.Dot(&b.s, &b.y)
|
||
|
||
if b.first {
|
||
// Rescale the initial Hessian.
|
||
// From: Nocedal, J., Wright, S.: Numerical Optimization (2nd ed).
|
||
// Springer (2006), page 143, eq. 6.20.
|
||
yDotY := mat.Dot(&b.y, &b.y)
|
||
scale := sDotY / yDotY
|
||
for i := 0; i < dim; i++ {
|
||
for j := i; j < dim; j++ {
|
||
if i == j {
|
||
b.invHess.SetSym(i, i, scale)
|
||
} else {
|
||
b.invHess.SetSym(i, j, 0)
|
||
}
|
||
}
|
||
}
|
||
b.first = false
|
||
}
|
||
|
||
if math.Abs(sDotY) != 0 {
|
||
// Update the inverse Hessian according to the formula
|
||
//
|
||
// B_{k+1}^-1 = B_k^-1
|
||
// + (s_k^T y_k + y_k^T B_k^-1 y_k) / (s_k^T y_k)^2 * (s_k s_k^T)
|
||
// - (B_k^-1 y_k s_k^T + s_k y_k^T B_k^-1) / (s_k^T y_k).
|
||
//
|
||
// Note that y_k^T B_k^-1 y_k is a scalar, and that the third term is a
|
||
// rank-two update where B_k^-1 y_k is one vector and s_k is the other.
|
||
yBy := mat.Inner(&b.y, b.invHess, &b.y)
|
||
b.tmp.MulVec(b.invHess, &b.y)
|
||
scale := (1 + yBy/sDotY) / sDotY
|
||
b.invHess.SymRankOne(b.invHess, scale, &b.s)
|
||
b.invHess.RankTwo(b.invHess, -1/sDotY, &b.tmp, &b.s)
|
||
}
|
||
|
||
// Update the stored BFGS data.
|
||
b.x.CopyVec(x)
|
||
b.grad.CopyVec(grad)
|
||
|
||
// New direction is stored in dir.
|
||
d := mat.NewVecDense(dim, dir)
|
||
d.MulVec(b.invHess, grad)
|
||
d.ScaleVec(-1, d)
|
||
|
||
return 1
|
||
}
|
||
|
||
func (*BFGS) Needs() struct {
|
||
Gradient bool
|
||
Hessian bool
|
||
} {
|
||
return struct {
|
||
Gradient bool
|
||
Hessian bool
|
||
}{true, false}
|
||
}
|