mirror of
https://github.com/gonum/gonum.git
synced 2025-10-04 23:02:42 +08:00

Apply (with manual curation after the fact): * s/^T/U+1d40/g * s/^H/U+1d34/g * s/, {2,3}if / $1/g Some additional manual editing of odd formatting.
61 lines
1.8 KiB
Go
61 lines
1.8 KiB
Go
// Copyright ©2017 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package testlapack
|
|
|
|
import (
|
|
"fmt"
|
|
"testing"
|
|
|
|
"golang.org/x/exp/rand"
|
|
|
|
"gonum.org/v1/gonum/blas"
|
|
)
|
|
|
|
type Dpbtf2er interface {
|
|
Dpbtf2(uplo blas.Uplo, n, kd int, ab []float64, ldab int) (ok bool)
|
|
}
|
|
|
|
// Dpbtf2Test tests Dpbtf2 on random symmetric positive definite band matrices
|
|
// by checking that the Cholesky factors multiply back to the original matrix.
|
|
func Dpbtf2Test(t *testing.T, impl Dpbtf2er) {
|
|
// TODO(vladimir-ch): include expected-failure test case.
|
|
rnd := rand.New(rand.NewSource(1))
|
|
for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 20} {
|
|
for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} {
|
|
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
|
|
for _, ldab := range []int{kd + 1, kd + 1 + 7} {
|
|
dpbtf2Test(t, impl, rnd, uplo, n, kd, ldab)
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
func dpbtf2Test(t *testing.T, impl Dpbtf2er, rnd *rand.Rand, uplo blas.Uplo, n, kd int, ldab int) {
|
|
const tol = 1e-12
|
|
|
|
name := fmt.Sprintf("uplo=%v,n=%v,kd=%v,ldab=%v", string(uplo), n, kd, ldab)
|
|
|
|
// Generate a random symmetric positive definite band matrix.
|
|
ab := randSymBand(uplo, n, kd, ldab, rnd)
|
|
|
|
// Compute the Cholesky decomposition of A.
|
|
abFac := make([]float64, len(ab))
|
|
copy(abFac, ab)
|
|
ok := impl.Dpbtf2(uplo, n, kd, abFac, ldab)
|
|
if !ok {
|
|
t.Fatalf("%v: bad test matrix, Dpbtf2 failed", name)
|
|
}
|
|
|
|
// Reconstruct an symmetric band matrix from the Uᵀ*U or L*Lᵀ factorization, overwriting abFac.
|
|
dsbmm(uplo, n, kd, abFac, ldab)
|
|
|
|
// Compute and check the max-norm distance between the reconstructed and original matrix A.
|
|
dist := distSymBand(uplo, n, kd, abFac, ldab, ab, ldab)
|
|
if dist > tol {
|
|
t.Errorf("%v: unexpected result, diff=%v", name, dist)
|
|
}
|
|
}
|