mirror of
https://github.com/gonum/gonum.git
synced 2025-10-07 16:11:03 +08:00

The impact on the current implementation is negligible. name old time/op new time/op delta BellmanFordFrom/500_tenth-8 4.14ms ± 1% 4.11ms ± 1% -0.73% (p=0.001 n=10+9) BellmanFordFrom/1000_tenth-8 16.3ms ± 1% 16.1ms ± 1% -0.82% (p=0.000 n=10+10) BellmanFordFrom/2000_tenth-8 66.2ms ± 1% 60.9ms ± 0% -8.08% (p=0.000 n=10+9) BellmanFordFrom/500_half-8 18.0ms ± 5% 16.9ms ± 1% -6.28% (p=0.000 n=10+9) BellmanFordFrom/1000_half-8 68.5ms ± 2% 67.4ms ± 1% -1.50% (p=0.000 n=9+8) BellmanFordFrom/2000_half-8 281ms ± 1% 276ms ± 1% -1.45% (p=0.000 n=9+10) BellmanFordFrom/500_full-8 33.4ms ± 0% 33.0ms ± 1% -1.29% (p=0.000 n=9+9) BellmanFordFrom/1000_full-8 137ms ± 1% 133ms ± 0% -3.11% (p=0.000 n=8+9) BellmanFordFrom/2000_full-8 549ms ± 1% 546ms ± 1% ~ (p=0.065 n=10+9) name old alloc/op new alloc/op delta BellmanFordFrom/500_tenth-8 142kB ± 0% 142kB ± 0% ~ (p=0.110 n=10+9) BellmanFordFrom/1000_tenth-8 284kB ± 0% 284kB ± 0% ~ (p=0.382 n=10+10) BellmanFordFrom/2000_tenth-8 624kB ± 0% 624kB ± 0% ~ (p=0.956 n=10+10) BellmanFordFrom/500_half-8 142kB ± 0% 142kB ± 0% ~ (p=0.666 n=10+10) BellmanFordFrom/1000_half-8 284kB ± 0% 284kB ± 0% ~ (p=0.070 n=10+8) BellmanFordFrom/2000_half-8 624kB ± 0% 624kB ± 0% ~ (p=0.290 n=10+10) BellmanFordFrom/500_full-8 142kB ± 0% 142kB ± 0% ~ (p=0.234 n=9+10) BellmanFordFrom/1000_full-8 284kB ± 0% 284kB ± 0% ~ (p=0.051 n=10+9) BellmanFordFrom/2000_full-8 624kB ± 0% 624kB ± 0% ~ (p=0.790 n=9+10) name old allocs/op new allocs/op delta BellmanFordFrom/500_tenth-8 2.03k ± 0% 2.03k ± 0% ~ (all equal) BellmanFordFrom/1000_tenth-8 4.03k ± 0% 4.03k ± 0% ~ (all equal) BellmanFordFrom/2000_tenth-8 8.03k ± 0% 8.03k ± 0% ~ (all equal) BellmanFordFrom/500_half-8 2.03k ± 0% 2.03k ± 0% ~ (p=0.294 n=10+8) BellmanFordFrom/1000_half-8 4.03k ± 0% 4.03k ± 0% ~ (all equal) BellmanFordFrom/2000_half-8 8.03k ± 0% 8.03k ± 0% ~ (all equal) BellmanFordFrom/500_full-8 2.03k ± 0% 2.03k ± 0% ~ (p=1.000 n=10+10) BellmanFordFrom/1000_full-8 4.03k ± 0% 4.03k ± 0% ~ (all equal) BellmanFordFrom/2000_full-8 8.03k ± 0% 8.03k ± 0% ~ (p=1.000 n=10+10) The performance of the lazy implementation is a little worse and allocations are a lot worse than the eager implementation. This reflects that the benchmark is performed on a graph with a single connected component which gains no benefit from the incremental approach but suffers the cost of repeated reallocation for appends. name new time/op inc time/op delta BellmanFordFrom/500_tenth-8 4.11ms ± 1% 4.28ms ± 1% +4.05% (p=0.000 n=9+10) BellmanFordFrom/1000_tenth-8 16.1ms ± 1% 16.0ms ± 6% ~ (p=0.143 n=10+10) BellmanFordFrom/2000_tenth-8 60.9ms ± 0% 62.8ms ± 0% +3.13% (p=0.000 n=9+10) BellmanFordFrom/500_half-8 16.9ms ± 1% 17.5ms ± 1% +3.97% (p=0.000 n=9+10) BellmanFordFrom/1000_half-8 67.4ms ± 1% 70.0ms ± 2% +3.76% (p=0.000 n=8+9) BellmanFordFrom/2000_half-8 276ms ± 1% 285ms ± 0% +2.91% (p=0.000 n=10+10) BellmanFordFrom/500_full-8 33.0ms ± 1% 35.5ms ± 5% +7.40% (p=0.000 n=9+10) BellmanFordFrom/1000_full-8 133ms ± 0% 137ms ± 2% +3.48% (p=0.000 n=9+9) BellmanFordFrom/2000_full-8 546ms ± 1% 592ms ± 6% +8.42% (p=0.000 n=9+10) name new alloc/op inc alloc/op delta BellmanFordFrom/500_tenth-8 142kB ± 0% 182kB ± 0% +27.84% (p=0.000 n=9+10) BellmanFordFrom/1000_tenth-8 284kB ± 0% 363kB ± 0% +27.94% (p=0.000 n=10+10) BellmanFordFrom/2000_tenth-8 624kB ± 0% 893kB ± 0% +43.26% (p=0.000 n=10+10) BellmanFordFrom/500_half-8 142kB ± 0% 182kB ± 0% +27.83% (p=0.000 n=10+10) BellmanFordFrom/1000_half-8 284kB ± 0% 363kB ± 0% +27.90% (p=0.000 n=8+10) BellmanFordFrom/2000_half-8 624kB ± 0% 893kB ± 0% +43.25% (p=0.000 n=10+10) BellmanFordFrom/500_full-8 142kB ± 0% 182kB ± 0% +27.82% (p=0.000 n=10+10) BellmanFordFrom/1000_full-8 284kB ± 0% 363kB ± 0% +27.89% (p=0.000 n=9+10) BellmanFordFrom/2000_full-8 624kB ± 0% 893kB ± 0% +43.23% (p=0.000 n=10+10) name new allocs/op inc allocs/op delta BellmanFordFrom/500_tenth-8 2.03k ± 0% 2.10k ± 0% +3.50% (p=0.000 n=8+8) BellmanFordFrom/1000_tenth-8 4.03k ± 0% 4.12k ± 0% +2.39% (p=0.000 n=10+10) BellmanFordFrom/2000_tenth-8 8.03k ± 0% 8.17k ± 0% +1.77% (p=0.000 n=10+10) BellmanFordFrom/500_half-8 2.03k ± 0% 2.10k ± 0% +3.49% (p=0.000 n=8+10) BellmanFordFrom/1000_half-8 4.03k ± 0% 4.12k ± 0% +2.36% (p=0.000 n=9+10) BellmanFordFrom/2000_half-8 8.03k ± 0% 8.17k ± 0% +1.77% (p=0.000 n=8+10) BellmanFordFrom/500_full-8 2.03k ± 0% 2.10k ± 0% +3.50% (p=0.000 n=10+10) BellmanFordFrom/1000_full-8 4.03k ± 0% 4.12k ± 0% +2.36% (p=0.000 n=9+10) BellmanFordFrom/2000_full-8 8.03k ± 0% 8.17k ± 0% +1.76% (p=0.000 n=10+10)
234 lines
6.3 KiB
Go
234 lines
6.3 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package path
|
|
|
|
import (
|
|
"gonum.org/v1/gonum/graph"
|
|
"gonum.org/v1/gonum/graph/internal/linear"
|
|
"gonum.org/v1/gonum/graph/traverse"
|
|
)
|
|
|
|
// BellmanFordFrom returns a shortest-path tree for a shortest path from u to all nodes in
|
|
// the graph g, or false indicating that a negative cycle exists in the graph. If the graph
|
|
// does not implement Weighted, UniformCost is used.
|
|
//
|
|
// If g is a graph.Graph, all nodes of the graph will be stored in the shortest-path
|
|
// tree, otherwise only nodes reachable from u will be stored.
|
|
//
|
|
// The time complexity of BellmanFordFrom is O(|V|.|E|).
|
|
func BellmanFordFrom(u graph.Node, g traverse.Graph) (path Shortest, ok bool) {
|
|
if h, ok := g.(graph.Graph); ok {
|
|
if h.Node(u.ID()) == nil {
|
|
return Shortest{from: u}, true
|
|
}
|
|
path = newShortestFrom(u, graph.NodesOf(h.Nodes()))
|
|
} else {
|
|
if g.From(u.ID()) == graph.Empty {
|
|
return Shortest{from: u}, true
|
|
}
|
|
path = newShortestFrom(u, []graph.Node{u})
|
|
}
|
|
path.dist[path.indexOf[u.ID()]] = 0
|
|
path.negCosts = make(map[negEdge]float64)
|
|
|
|
var weight Weighting
|
|
if wg, ok := g.(Weighted); ok {
|
|
weight = wg.Weight
|
|
} else {
|
|
weight = UniformCost(g)
|
|
}
|
|
|
|
// Queue to keep track which nodes need to be relaxed.
|
|
// Only nodes whose vertex distance changed in the previous iterations
|
|
// need to be relaxed again.
|
|
queue := newBellmanFordQueue(path.indexOf)
|
|
queue.enqueue(u)
|
|
|
|
// TODO(kortschak): Consider adding further optimisations
|
|
// from http://arxiv.org/abs/1111.5414.
|
|
var loops int64
|
|
for queue.len() != 0 {
|
|
u := queue.dequeue()
|
|
uid := u.ID()
|
|
j := path.indexOf[uid]
|
|
|
|
to := g.From(uid)
|
|
for to.Next() {
|
|
v := to.Node()
|
|
vid := v.ID()
|
|
k, ok := path.indexOf[vid]
|
|
if !ok {
|
|
k = path.add(v)
|
|
}
|
|
w, ok := weight(uid, vid)
|
|
if !ok {
|
|
panic("bellman-ford: unexpected invalid weight")
|
|
}
|
|
|
|
joint := path.dist[j] + w
|
|
if joint < path.dist[k] {
|
|
path.set(k, joint, j)
|
|
|
|
if !queue.has(vid) {
|
|
queue.enqueue(v)
|
|
}
|
|
}
|
|
}
|
|
|
|
// The maximum number of edges in the relaxed subgraph is |V_r| * (|V_r|-1).
|
|
// If the queue-loop has more iterations than the maximum number of edges
|
|
// it indicates that we have a negative cycle.
|
|
maxEdges := int64(len(path.nodes)) * int64(len(path.nodes)-1)
|
|
if loops > maxEdges {
|
|
path.hasNegativeCycle = true
|
|
return path, false
|
|
}
|
|
loops++
|
|
}
|
|
|
|
return path, true
|
|
}
|
|
|
|
// BellmanFordAllFrom returns a shortest-path tree for shortest paths from u to all nodes in
|
|
// the graph g, or false indicating that a negative cycle exists in the graph. If the graph
|
|
// does not implement Weighted, UniformCost is used.
|
|
//
|
|
// If g is a graph.Graph, all nodes of the graph will be stored in the shortest-path
|
|
// tree, otherwise only nodes reachable from u will be stored.
|
|
//
|
|
// The time complexity of BellmanFordAllFrom is O(|V|.|E|).
|
|
func BellmanFordAllFrom(u graph.Node, g traverse.Graph) (path ShortestAlts, ok bool) {
|
|
if h, ok := g.(graph.Graph); ok {
|
|
if h.Node(u.ID()) == nil {
|
|
return ShortestAlts{from: u}, true
|
|
}
|
|
path = newShortestAltsFrom(u, graph.NodesOf(h.Nodes()))
|
|
} else {
|
|
if g.From(u.ID()) == graph.Empty {
|
|
return ShortestAlts{from: u}, true
|
|
}
|
|
path = newShortestAltsFrom(u, []graph.Node{u})
|
|
}
|
|
path.dist[path.indexOf[u.ID()]] = 0
|
|
path.negCosts = make(map[negEdge]float64)
|
|
|
|
var weight Weighting
|
|
if wg, ok := g.(Weighted); ok {
|
|
weight = wg.Weight
|
|
} else {
|
|
weight = UniformCost(g)
|
|
}
|
|
|
|
// Queue to keep track which nodes need to be relaxed.
|
|
// Only nodes whose vertex distance changed in the previous iterations
|
|
// need to be relaxed again.
|
|
queue := newBellmanFordQueue(path.indexOf)
|
|
queue.enqueue(u)
|
|
|
|
// TODO(kortschak): Consider adding further optimisations
|
|
// from http://arxiv.org/abs/1111.5414.
|
|
var loops int64
|
|
for queue.len() != 0 {
|
|
u := queue.dequeue()
|
|
uid := u.ID()
|
|
j := path.indexOf[uid]
|
|
|
|
for _, v := range graph.NodesOf(g.From(uid)) {
|
|
vid := v.ID()
|
|
k, ok := path.indexOf[vid]
|
|
if !ok {
|
|
k = path.add(v)
|
|
}
|
|
w, ok := weight(uid, vid)
|
|
if !ok {
|
|
panic("bellman-ford: unexpected invalid weight")
|
|
}
|
|
|
|
joint := path.dist[j] + w
|
|
if joint < path.dist[k] {
|
|
path.set(k, joint, j)
|
|
|
|
if !queue.has(vid) {
|
|
queue.enqueue(v)
|
|
}
|
|
} else if joint == path.dist[k] {
|
|
path.addPath(k, j)
|
|
}
|
|
}
|
|
|
|
// The maximum number of edges in the relaxed subgraph is |V_r| * (|V_r|-1).
|
|
// If the queue-loop has more iterations than the maximum number of edges
|
|
// it indicates that we have a negative cycle.
|
|
maxEdges := int64(len(path.nodes)) * int64(len(path.nodes)-1)
|
|
if loops > maxEdges {
|
|
path.hasNegativeCycle = true
|
|
return path, false
|
|
}
|
|
loops++
|
|
}
|
|
|
|
return path, true
|
|
}
|
|
|
|
// bellmanFordQueue is a queue for the Queue-based Bellman-Ford algorithm.
|
|
type bellmanFordQueue struct {
|
|
// queue holds the nodes which need to be relaxed.
|
|
queue linear.NodeQueue
|
|
|
|
// onQueue keeps track whether a node is on the queue or not.
|
|
onQueue []bool
|
|
|
|
// indexOf contains a mapping holding the id of a node with its index in the onQueue array.
|
|
indexOf map[int64]int
|
|
}
|
|
|
|
// enqueue adds a node to the bellmanFordQueue.
|
|
func (q *bellmanFordQueue) enqueue(n graph.Node) {
|
|
i, ok := q.indexOf[n.ID()]
|
|
switch {
|
|
case !ok:
|
|
panic("bellman-ford: unknown node")
|
|
case i < len(q.onQueue):
|
|
if q.onQueue[i] {
|
|
panic("bellman-ford: already queued")
|
|
}
|
|
case i == len(q.onQueue):
|
|
q.onQueue = append(q.onQueue, false)
|
|
case i < cap(q.onQueue):
|
|
q.onQueue = q.onQueue[:i+1]
|
|
default:
|
|
q.onQueue = append(q.onQueue, make([]bool, i-len(q.onQueue)+1)...)
|
|
}
|
|
q.onQueue[i] = true
|
|
q.queue.Enqueue(n)
|
|
}
|
|
|
|
// dequeue returns the first value of the bellmanFordQueue.
|
|
func (q *bellmanFordQueue) dequeue() graph.Node {
|
|
n := q.queue.Dequeue()
|
|
q.onQueue[q.indexOf[n.ID()]] = false
|
|
return n
|
|
}
|
|
|
|
// len returns the number of nodes in the bellmanFordQueue.
|
|
func (q *bellmanFordQueue) len() int { return q.queue.Len() }
|
|
|
|
// has returns whether a node with the given id is in the queue.
|
|
func (q bellmanFordQueue) has(id int64) bool {
|
|
idx, ok := q.indexOf[id]
|
|
if !ok || idx >= len(q.onQueue) {
|
|
return false
|
|
}
|
|
return q.onQueue[idx]
|
|
}
|
|
|
|
// newBellmanFordQueue creates a new bellmanFordQueue.
|
|
func newBellmanFordQueue(indexOf map[int64]int) bellmanFordQueue {
|
|
return bellmanFordQueue{
|
|
onQueue: make([]bool, len(indexOf)),
|
|
indexOf: indexOf,
|
|
}
|
|
}
|