Files
gonum/distmv/studentst.go
Brendan Tracey 6d596f2b27 Store sigma in Normal and StudentsT
Currently, we throw sigma away, and recompute it if necessary. This PR keeps sigma. This fixes an issue with concurrent calling of methods. In addition, however, it removes any possible issues with reconstructing a badly-conditioned sigma from its Cholesky decomposition, and avoids an extra n^3 work if sigma does need to be recomputed. The complexity of the implementation and difficulties listed above is not worth the memory savings in some cases, especially since the memory of the type is already O(n^2)
2017-03-07 16:03:44 -07:00

355 lines
10 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmv
import (
"math"
"math/rand"
"sort"
"golang.org/x/tools/container/intsets"
"github.com/gonum/floats"
"github.com/gonum/matrix/mat64"
"github.com/gonum/stat/distuv"
)
// StudentsT is a multivariate Student's T distribution. It is a distribution over
// ^n with the probability density
// p(y) = (Γ((ν+n)/2) / Γ(ν/2)) * (νπ)^(-n/2) * |Ʃ|^(-1/2) *
// (1 + 1/ν * (y-μ)^T * Ʃ^-1 * (y-μ))^(-(ν+n)/2)
// where ν is a scalar greater than 2, μ is a vector in ^n, and Ʃ is an n×n
// symmetric positive definite matrix.
//
// In this distribution, ν sets the spread of the distribution, similar to
// the degrees of freedom in a univariate Student's T distribution. As ν → ∞,
// the distribution approaches a multi-variate normal distribution.
// μ is the mean of the distribution, and the covariance is ν/(ν-2)*Ʃ.
//
// See https://en.wikipedia.org/wiki/Student%27s_t-distribution and
// http://users.isy.liu.se/en/rt/roth/student.pdf for more information.
type StudentsT struct {
nu float64
mu []float64
src *rand.Rand
sigma mat64.SymDense // only stored if needed
chol mat64.Cholesky
lower mat64.TriDense
logSqrtDet float64
dim int
}
// NewStudentsT creates a new StudentsT with the given nu, mu, and sigma
// parameters.
//
// NewStudentsT panics if len(mu) == 0, or if len(mu) != sigma.Symmetric(). If
// the covariance matrix is not positive-definite, nil is returned and ok is false.
func NewStudentsT(mu []float64, sigma mat64.Symmetric, nu float64, src *rand.Rand) (dist *StudentsT, ok bool) {
if len(mu) == 0 {
panic(badZeroDimension)
}
dim := sigma.Symmetric()
if dim != len(mu) {
panic(badSizeMismatch)
}
s := &StudentsT{
nu: nu,
mu: make([]float64, dim),
dim: dim,
src: src,
}
copy(s.mu, mu)
ok = s.chol.Factorize(sigma)
if !ok {
return nil, false
}
s.sigma = *mat64.NewSymDense(dim, nil)
s.sigma.CopySym(sigma)
s.lower.LFromCholesky(&s.chol)
s.logSqrtDet = 0.5 * s.chol.LogDet()
return s, true
}
// ConditionStudentsT returns the Student's T distribution that is the receiver
// conditioned on the input evidence, and the success of the operation.
// The returned Student's T has dimension
// n - len(observed), where n is the dimension of the original receiver.
// The dimension order is preserved during conditioning, so if the value
// of dimension 1 is observed, the returned normal represents dimensions {0, 2, ...}
// of the original Student's T distribution.
//
// ok indicates whether there was a failure during the update. If ok is false
// the operation failed and dist is not usable.
// Mathematically this is impossible, but can occur with finite precision arithmetic.
func (s *StudentsT) ConditionStudentsT(observed []int, values []float64, src *rand.Rand) (dist *StudentsT, ok bool) {
if len(observed) == 0 {
panic("studentst: no observed value")
}
if len(observed) != len(values) {
panic(badInputLength)
}
for _, v := range observed {
if v < 0 || v >= s.dim {
panic("studentst: observed value out of bounds")
}
}
newNu, newMean, newSigma := studentsTConditional(observed, values, s.nu, s.mu, &s.sigma)
if newMean == nil {
return nil, false
}
return NewStudentsT(newMean, newSigma, newNu, src)
}
// studentsTConditional updates a Student's T distribution based on the observed samples
// (see documentation for the public function). The Gaussian conditional update
// is treated as a special case when nu == math.Inf(1).
func studentsTConditional(observed []int, values []float64, nu float64, mu []float64, sigma mat64.Symmetric) (newNu float64, newMean []float64, newSigma *mat64.SymDense) {
dim := len(mu)
ob := len(observed)
unobserved := findUnob(observed, dim)
unob := len(unobserved)
if unob == 0 {
panic("stat: all dimensions observed")
}
mu1 := make([]float64, unob)
for i, v := range unobserved {
mu1[i] = mu[v]
}
mu2 := make([]float64, ob) // really v - mu2
for i, v := range observed {
mu2[i] = values[i] - mu[v]
}
var sigma11, sigma22 mat64.SymDense
sigma11.SubsetSym(sigma, unobserved)
sigma22.SubsetSym(sigma, observed)
sigma21 := mat64.NewDense(ob, unob, nil)
for i, r := range observed {
for j, c := range unobserved {
v := sigma.At(r, c)
sigma21.Set(i, j, v)
}
}
var chol mat64.Cholesky
ok := chol.Factorize(&sigma22)
if !ok {
return math.NaN(), nil, nil
}
// Compute mu_1 + sigma_{2,1}^T * sigma_{2,2}^-1 (v - mu_2).
v := mat64.NewVector(ob, mu2)
var tmp, tmp2 mat64.Vector
err := tmp.SolveCholeskyVec(&chol, v)
if err != nil {
return math.NaN(), nil, nil
}
tmp2.MulVec(sigma21.T(), &tmp)
for i := range mu1 {
mu1[i] += tmp2.At(i, 0)
}
// Compute tmp4 = sigma_{2,1}^T * sigma_{2,2}^-1 * sigma_{2,1}.
// TODO(btracey): Should this be a method of SymDense?
var tmp3, tmp4 mat64.Dense
err = tmp3.SolveCholesky(&chol, sigma21)
if err != nil {
return math.NaN(), nil, nil
}
tmp4.Mul(sigma21.T(), &tmp3)
// Compute sigma_{1,1} - tmp4
// TODO(btracey): If tmp4 can constructed with a method, then this can be
// replaced with SubSym.
for i := 0; i < len(unobserved); i++ {
for j := i; j < len(unobserved); j++ {
v := sigma11.At(i, j)
sigma11.SetSym(i, j, v-tmp4.At(i, j))
}
}
// The computed variables are accurate for a Normal.
if math.IsInf(nu, 1) {
return nu, mu1, &sigma11
}
// Compute beta = (v - mu_2)^T * sigma_{2,2}^-1 * (v - mu_2)^T
beta := mat64.Dot(v, &tmp)
// Scale the covariance matrix
sigma11.ScaleSym((nu+beta)/(nu+float64(ob)), &sigma11)
return nu + float64(ob), mu1, &sigma11
}
// findUnob returns the unobserved variables (the complementary set to observed).
// findUnob panics if any value repeated in observed.
func findUnob(observed []int, dim int) (unobserved []int) {
var setOb intsets.Sparse
for _, v := range observed {
setOb.Insert(v)
}
var setAll intsets.Sparse
for i := 0; i < dim; i++ {
setAll.Insert(i)
}
var setUnob intsets.Sparse
setUnob.Difference(&setAll, &setOb)
unobserved = setUnob.AppendTo(nil)
sort.Ints(unobserved)
return unobserved
}
// CovarianceMatrix returns the covariance matrix of the distribution. Upon
// return, the value at element {i, j} of the covariance matrix is equal to
// the covariance of the i^th and j^th variables.
// covariance(i, j) = E[(x_i - E[x_i])(x_j - E[x_j])]
// If the input matrix is nil a new matrix is allocated, otherwise the result
// is stored in-place into the input.
func (st *StudentsT) CovarianceMatrix(s *mat64.SymDense) *mat64.SymDense {
if s == nil {
s = mat64.NewSymDense(st.dim, nil)
}
sn := s.Symmetric()
if sn != st.dim {
panic("normal: input matrix size mismatch")
}
s.CopySym(&st.sigma)
s.ScaleSym(st.nu/(st.nu-2), s)
return s
}
// Dim returns the dimension of the distribution.
func (s *StudentsT) Dim() int {
return s.dim
}
// LogProb computes the log of the pdf of the point x.
func (s *StudentsT) LogProb(y []float64) float64 {
if len(y) != s.dim {
panic(badInputLength)
}
nu := s.nu
n := float64(s.dim)
lg1, _ := math.Lgamma((nu + n) / 2)
lg2, _ := math.Lgamma(nu / 2)
t1 := lg1 - lg2 - n/2*math.Log(nu*math.Pi) - s.logSqrtDet
shift := make([]float64, len(y))
copy(shift, y)
floats.Sub(shift, s.mu)
x := mat64.NewVector(s.dim, shift)
var tmp mat64.Vector
tmp.SolveCholeskyVec(&s.chol, x)
dot := mat64.Dot(&tmp, x)
return t1 - ((nu+n)/2)*math.Log(1+dot/nu)
}
// MarginalStudentsT returns the marginal distribution of the given input variables,
// and the success of the operation.
// That is, MarginalStudentsT returns
// p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
// where x_i are the dimensions in the input, and x_o are the remaining dimensions.
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
//
// The input src is passed to the created StudentsT.
//
// ok indicates whether there was a failure during the marginalization. If ok is false
// the operation failed and dist is not usable.
// Mathematically this is impossible, but can occur with finite precision arithmetic.
func (s *StudentsT) MarginalStudentsT(vars []int, src *rand.Rand) (dist *StudentsT, ok bool) {
newMean := make([]float64, len(vars))
for i, v := range vars {
newMean[i] = s.mu[v]
}
var newSigma mat64.SymDense
newSigma.SubsetSym(&s.sigma, vars)
return NewStudentsT(newMean, &newSigma, s.nu, src)
}
// MarginalStudentsT returns the marginal distribution of the given input variable.
// That is, MarginalStudentsT returns
// p(x_i) = \int_{x_o} p(x_i | x_o) p(x_o) dx_o
// where i is the input index, and x_o are the remaining dimensions.
// See https://en.wikipedia.org/wiki/Marginal_distribution for more information.
//
// The input src is passed to the call to NewStudentsT.
func (s *StudentsT) MarginalStudentsTSingle(i int, src *rand.Rand) distuv.StudentsT {
return distuv.StudentsT{
Mu: s.mu[i],
Sigma: math.Sqrt(s.sigma.At(i, i)),
Nu: s.nu,
Src: src,
}
}
// TODO(btracey): Implement marginal single. Need to modify univariate StudentsT
// to be three-parameter.
// Mean returns the mean of the probability distribution at x. If the
// input argument is nil, a new slice will be allocated, otherwise the result
// will be put in-place into the receiver.
func (s *StudentsT) Mean(x []float64) []float64 {
x = reuseAs(x, s.dim)
copy(x, s.mu)
return x
}
// Prob computes the value of the probability density function at x.
func (s *StudentsT) Prob(y []float64) float64 {
return math.Exp(s.LogProb(y))
}
// Rand generates a random number according to the distributon.
// If the input slice is nil, new memory is allocated, otherwise the result is stored
// in place.
func (s *StudentsT) Rand(x []float64) []float64 {
// If Y is distributed according to N(0,Sigma), and U is chi^2 with
// parameter ν, then
// X = mu + Y * sqrt(nu / U)
// X is distributed according to this distribution.
// Generate Y.
x = reuseAs(x, s.dim)
tmp := make([]float64, s.dim)
if s.src == nil {
for i := range x {
tmp[i] = rand.NormFloat64()
}
} else {
for i := range x {
tmp[i] = s.src.NormFloat64()
}
}
xVec := mat64.NewVector(s.dim, x)
tmpVec := mat64.NewVector(s.dim, tmp)
xVec.MulVec(&s.lower, tmpVec)
u := distuv.ChiSquared{K: s.nu, Src: s.src}.Rand()
floats.Scale(math.Sqrt(s.nu/u), x)
floats.Add(x, s.mu)
return x
}