mirror of
				https://github.com/gonum/gonum.git
				synced 2025-11-01 02:52:49 +08:00 
			
		
		
		
	
		
			
				
	
	
		
			185 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
			
		
		
	
	
			185 lines
		
	
	
		
			5.5 KiB
		
	
	
	
		
			Go
		
	
	
	
	
	
| // Copyright ©2013 The gonum Authors. All rights reserved.
 | ||
| // Use of this source code is governed by a BSD-style
 | ||
| // license that can be found in the LICENSE file.
 | ||
| // Based on the QRDecomposition class from Jama 1.0.3.
 | ||
| 
 | ||
| package mat64
 | ||
| 
 | ||
| import (
 | ||
| 	"math"
 | ||
| 
 | ||
| 	"gonum.org/v1/gonum/blas"
 | ||
| 	"gonum.org/v1/gonum/blas/blas64"
 | ||
| 	"gonum.org/v1/gonum/lapack/lapack64"
 | ||
| 	"gonum.org/v1/gonum/matrix"
 | ||
| )
 | ||
| 
 | ||
| // QR is a type for creating and using the QR factorization of a matrix.
 | ||
| type QR struct {
 | ||
| 	qr   *Dense
 | ||
| 	tau  []float64
 | ||
| 	cond float64
 | ||
| }
 | ||
| 
 | ||
| func (qr *QR) updateCond() {
 | ||
| 	// A = QR, where Q is orthonormal. Orthonormal multiplications do not change
 | ||
| 	// the condition number. Thus, ||A|| = ||Q|| ||R|| = ||R||.
 | ||
| 	n := qr.qr.mat.Cols
 | ||
| 	work := make([]float64, 3*n)
 | ||
| 	iwork := make([]int, n)
 | ||
| 	r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
 | ||
| 	v := lapack64.Trcon(matrix.CondNorm, r.mat, work, iwork)
 | ||
| 	qr.cond = 1 / v
 | ||
| }
 | ||
| 
 | ||
| // Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR
 | ||
| // factorization always exists even if A is singular.
 | ||
| //
 | ||
| // The QR decomposition is a factorization of the matrix A such that A = Q * R.
 | ||
| // The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix.
 | ||
| // Q and R can be extracted using the QTo and RTo methods.
 | ||
| func (qr *QR) Factorize(a Matrix) {
 | ||
| 	m, n := a.Dims()
 | ||
| 	if m < n {
 | ||
| 		panic(matrix.ErrShape)
 | ||
| 	}
 | ||
| 	k := min(m, n)
 | ||
| 	if qr.qr == nil {
 | ||
| 		qr.qr = &Dense{}
 | ||
| 	}
 | ||
| 	qr.qr.Clone(a)
 | ||
| 	work := make([]float64, 1)
 | ||
| 	qr.tau = make([]float64, k)
 | ||
| 	lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
 | ||
| 
 | ||
| 	work = make([]float64, int(work[0]))
 | ||
| 	lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
 | ||
| 	qr.updateCond()
 | ||
| }
 | ||
| 
 | ||
| // TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal
 | ||
| // and upper triangular matrices.
 | ||
| 
 | ||
| // RTo extracts the m×n upper trapezoidal matrix from a QR decomposition.
 | ||
| func (qr *QR) RTo(dst *Dense) {
 | ||
| 	r, c := qr.qr.Dims()
 | ||
| 	dst.reuseAs(r, c)
 | ||
| 
 | ||
| 	// Disguise the QR as an upper triangular
 | ||
| 	t := &TriDense{
 | ||
| 		mat: blas64.Triangular{
 | ||
| 			N:      c,
 | ||
| 			Stride: qr.qr.mat.Stride,
 | ||
| 			Data:   qr.qr.mat.Data,
 | ||
| 			Uplo:   blas.Upper,
 | ||
| 			Diag:   blas.NonUnit,
 | ||
| 		},
 | ||
| 		cap: qr.qr.capCols,
 | ||
| 	}
 | ||
| 	dst.Copy(t)
 | ||
| 
 | ||
| 	// Zero below the triangular.
 | ||
| 	for i := r; i < c; i++ {
 | ||
| 		zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c])
 | ||
| 	}
 | ||
| }
 | ||
| 
 | ||
| // QTo extracts the m×m orthonormal matrix Q from a QR decomposition.
 | ||
| func (qr *QR) QTo(dst *Dense) {
 | ||
| 	r, _ := qr.qr.Dims()
 | ||
| 	dst.reuseAsZeroed(r, r)
 | ||
| 
 | ||
| 	// Set Q = I.
 | ||
| 	for i := 0; i < r*r; i += r + 1 {
 | ||
| 		dst.mat.Data[i] = 1
 | ||
| 	}
 | ||
| 
 | ||
| 	// Construct Q from the elementary reflectors.
 | ||
| 	work := make([]float64, 1)
 | ||
| 	lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1)
 | ||
| 	work = make([]float64, int(work[0]))
 | ||
| 	lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work))
 | ||
| }
 | ||
| 
 | ||
| // SolveQR finds a minimum-norm solution to a system of linear equations defined
 | ||
| // by the matrices A and b, where A is an m×n matrix represented in its QR factorized
 | ||
| // form. If A is singular or near-singular a Condition error is returned. Please
 | ||
| // see the documentation for Condition for more information.
 | ||
| //
 | ||
| // The minimization problem solved depends on the input parameters.
 | ||
| //  If trans == false, find X such that ||A*X - b||_2 is minimized.
 | ||
| //  If trans == true, find the minimum norm solution of A^T * X = b.
 | ||
| // The solution matrix, X, is stored in place into the receiver.
 | ||
| func (m *Dense) SolveQR(qr *QR, trans bool, b Matrix) error {
 | ||
| 	r, c := qr.qr.Dims()
 | ||
| 	br, bc := b.Dims()
 | ||
| 
 | ||
| 	// The QR solve algorithm stores the result in-place into the right hand side.
 | ||
| 	// The storage for the answer must be large enough to hold both b and x.
 | ||
| 	// However, this method's receiver must be the size of x. Copy b, and then
 | ||
| 	// copy the result into m at the end.
 | ||
| 	if trans {
 | ||
| 		if c != br {
 | ||
| 			panic(matrix.ErrShape)
 | ||
| 		}
 | ||
| 		m.reuseAs(r, bc)
 | ||
| 	} else {
 | ||
| 		if r != br {
 | ||
| 			panic(matrix.ErrShape)
 | ||
| 		}
 | ||
| 		m.reuseAs(c, bc)
 | ||
| 	}
 | ||
| 	// Do not need to worry about overlap between m and b because x has its own
 | ||
| 	// independent storage.
 | ||
| 	x := getWorkspace(max(r, c), bc, false)
 | ||
| 	x.Copy(b)
 | ||
| 	t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat
 | ||
| 	if trans {
 | ||
| 		ok := lapack64.Trtrs(blas.Trans, t, x.mat)
 | ||
| 		if !ok {
 | ||
| 			return matrix.Condition(math.Inf(1))
 | ||
| 		}
 | ||
| 		for i := c; i < r; i++ {
 | ||
| 			zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc])
 | ||
| 		}
 | ||
| 		work := make([]float64, 1)
 | ||
| 		lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, -1)
 | ||
| 		work = make([]float64, int(work[0]))
 | ||
| 		lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, len(work))
 | ||
| 	} else {
 | ||
| 		work := make([]float64, 1)
 | ||
| 		lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, -1)
 | ||
| 		work = make([]float64, int(work[0]))
 | ||
| 		lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, len(work))
 | ||
| 
 | ||
| 		ok := lapack64.Trtrs(blas.NoTrans, t, x.mat)
 | ||
| 		if !ok {
 | ||
| 			return matrix.Condition(math.Inf(1))
 | ||
| 		}
 | ||
| 	}
 | ||
| 	// M was set above to be the correct size for the result.
 | ||
| 	m.Copy(x)
 | ||
| 	putWorkspace(x)
 | ||
| 	if qr.cond > matrix.ConditionTolerance {
 | ||
| 		return matrix.Condition(qr.cond)
 | ||
| 	}
 | ||
| 	return nil
 | ||
| }
 | ||
| 
 | ||
| // SolveQRVec finds a minimum-norm solution to a system of linear equations.
 | ||
| // Please see Dense.SolveQR for the full documentation.
 | ||
| func (v *Vector) SolveQRVec(qr *QR, trans bool, b *Vector) error {
 | ||
| 	if v != b {
 | ||
| 		v.checkOverlap(b.mat)
 | ||
| 	}
 | ||
| 	r, c := qr.qr.Dims()
 | ||
| 	// The Solve implementation is non-trivial, so rather than duplicate the code,
 | ||
| 	// instead recast the Vectors as Dense and call the matrix code.
 | ||
| 	if trans {
 | ||
| 		v.reuseAs(r)
 | ||
| 	} else {
 | ||
| 		v.reuseAs(c)
 | ||
| 	}
 | ||
| 	return v.asDense().SolveQR(qr, trans, b.asDense())
 | ||
| }
 | 
