Files
gonum/matrix/mat64/qr.go

185 lines
5.5 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2013 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
// Based on the QRDecomposition class from Jama 1.0.3.
package mat64
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
"gonum.org/v1/gonum/matrix"
)
// QR is a type for creating and using the QR factorization of a matrix.
type QR struct {
qr *Dense
tau []float64
cond float64
}
func (qr *QR) updateCond() {
// A = QR, where Q is orthonormal. Orthonormal multiplications do not change
// the condition number. Thus, ||A|| = ||Q|| ||R|| = ||R||.
n := qr.qr.mat.Cols
work := make([]float64, 3*n)
iwork := make([]int, n)
r := qr.qr.asTriDense(n, blas.NonUnit, blas.Upper)
v := lapack64.Trcon(matrix.CondNorm, r.mat, work, iwork)
qr.cond = 1 / v
}
// Factorize computes the QR factorization of an m×n matrix a where m >= n. The QR
// factorization always exists even if A is singular.
//
// The QR decomposition is a factorization of the matrix A such that A = Q * R.
// The matrix Q is an orthonormal m×m matrix, and R is an m×n upper triangular matrix.
// Q and R can be extracted using the QTo and RTo methods.
func (qr *QR) Factorize(a Matrix) {
m, n := a.Dims()
if m < n {
panic(matrix.ErrShape)
}
k := min(m, n)
if qr.qr == nil {
qr.qr = &Dense{}
}
qr.qr.Clone(a)
work := make([]float64, 1)
qr.tau = make([]float64, k)
lapack64.Geqrf(qr.qr.mat, qr.tau, work, -1)
work = make([]float64, int(work[0]))
lapack64.Geqrf(qr.qr.mat, qr.tau, work, len(work))
qr.updateCond()
}
// TODO(btracey): Add in the "Reduced" forms for extracting the n×n orthogonal
// and upper triangular matrices.
// RTo extracts the m×n upper trapezoidal matrix from a QR decomposition.
func (qr *QR) RTo(dst *Dense) {
r, c := qr.qr.Dims()
dst.reuseAs(r, c)
// Disguise the QR as an upper triangular
t := &TriDense{
mat: blas64.Triangular{
N: c,
Stride: qr.qr.mat.Stride,
Data: qr.qr.mat.Data,
Uplo: blas.Upper,
Diag: blas.NonUnit,
},
cap: qr.qr.capCols,
}
dst.Copy(t)
// Zero below the triangular.
for i := r; i < c; i++ {
zero(dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c])
}
}
// QTo extracts the m×m orthonormal matrix Q from a QR decomposition.
func (qr *QR) QTo(dst *Dense) {
r, _ := qr.qr.Dims()
dst.reuseAsZeroed(r, r)
// Set Q = I.
for i := 0; i < r*r; i += r + 1 {
dst.mat.Data[i] = 1
}
// Construct Q from the elementary reflectors.
work := make([]float64, 1)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, -1)
work = make([]float64, int(work[0]))
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, dst.mat, work, len(work))
}
// SolveQR finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its QR factorized
// form. If A is singular or near-singular a Condition error is returned. Please
// see the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find X such that ||A*X - b||_2 is minimized.
// If trans == true, find the minimum norm solution of A^T * X = b.
// The solution matrix, X, is stored in place into the receiver.
func (m *Dense) SolveQR(qr *QR, trans bool, b Matrix) error {
r, c := qr.qr.Dims()
br, bc := b.Dims()
// The QR solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into m at the end.
if trans {
if c != br {
panic(matrix.ErrShape)
}
m.reuseAs(r, bc)
} else {
if r != br {
panic(matrix.ErrShape)
}
m.reuseAs(c, bc)
}
// Do not need to worry about overlap between m and b because x has its own
// independent storage.
x := getWorkspace(max(r, c), bc, false)
x.Copy(b)
t := qr.qr.asTriDense(qr.qr.mat.Cols, blas.NonUnit, blas.Upper).mat
if trans {
ok := lapack64.Trtrs(blas.Trans, t, x.mat)
if !ok {
return matrix.Condition(math.Inf(1))
}
for i := c; i < r; i++ {
zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc])
}
work := make([]float64, 1)
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, -1)
work = make([]float64, int(work[0]))
lapack64.Ormqr(blas.Left, blas.NoTrans, qr.qr.mat, qr.tau, x.mat, work, len(work))
} else {
work := make([]float64, 1)
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, -1)
work = make([]float64, int(work[0]))
lapack64.Ormqr(blas.Left, blas.Trans, qr.qr.mat, qr.tau, x.mat, work, len(work))
ok := lapack64.Trtrs(blas.NoTrans, t, x.mat)
if !ok {
return matrix.Condition(math.Inf(1))
}
}
// M was set above to be the correct size for the result.
m.Copy(x)
putWorkspace(x)
if qr.cond > matrix.ConditionTolerance {
return matrix.Condition(qr.cond)
}
return nil
}
// SolveQRVec finds a minimum-norm solution to a system of linear equations.
// Please see Dense.SolveQR for the full documentation.
func (v *Vector) SolveQRVec(qr *QR, trans bool, b *Vector) error {
if v != b {
v.checkOverlap(b.mat)
}
r, c := qr.qr.Dims()
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the Vectors as Dense and call the matrix code.
if trans {
v.reuseAs(r)
} else {
v.reuseAs(c)
}
return v.asDense().SolveQR(qr, trans, b.asDense())
}