mirror of
https://github.com/gonum/gonum.git
synced 2025-11-02 19:34:01 +08:00
218 lines
5.9 KiB
Go
218 lines
5.9 KiB
Go
// Copyright ©2013 The gonum Authors. All rights reserved.
|
||
// Use of this source code is governed by a BSD-style
|
||
// license that can be found in the LICENSE file.
|
||
|
||
package mat64
|
||
|
||
import (
|
||
"math"
|
||
|
||
"gonum.org/v1/gonum/blas"
|
||
"gonum.org/v1/gonum/blas/blas64"
|
||
"gonum.org/v1/gonum/lapack/lapack64"
|
||
"gonum.org/v1/gonum/matrix"
|
||
)
|
||
|
||
// LQ is a type for creating and using the LQ factorization of a matrix.
|
||
type LQ struct {
|
||
lq *Dense
|
||
tau []float64
|
||
cond float64
|
||
}
|
||
|
||
func (lq *LQ) updateCond() {
|
||
// A = LQ, where Q is orthonormal. Orthonormal multiplications do not change
|
||
// the condition number. Thus, ||A|| = ||L|| ||Q|| = ||Q||.
|
||
m := lq.lq.mat.Rows
|
||
work := make([]float64, 3*m)
|
||
iwork := make([]int, m)
|
||
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
|
||
v := lapack64.Trcon(matrix.CondNorm, l.mat, work, iwork)
|
||
lq.cond = 1 / v
|
||
}
|
||
|
||
// Factorize computes the LQ factorization of an m×n matrix a where n <= m. The LQ
|
||
// factorization always exists even if A is singular.
|
||
//
|
||
// The LQ decomposition is a factorization of the matrix A such that A = L * Q.
|
||
// The matrix Q is an orthonormal n×n matrix, and L is an m×n upper triangular matrix.
|
||
// L and Q can be extracted from the LTo and QTo methods.
|
||
func (lq *LQ) Factorize(a Matrix) {
|
||
m, n := a.Dims()
|
||
if m > n {
|
||
panic(matrix.ErrShape)
|
||
}
|
||
k := min(m, n)
|
||
if lq.lq == nil {
|
||
lq.lq = &Dense{}
|
||
}
|
||
lq.lq.Clone(a)
|
||
work := make([]float64, 1)
|
||
lq.tau = make([]float64, k)
|
||
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
|
||
work = make([]float64, int(work[0]))
|
||
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
|
||
lq.updateCond()
|
||
}
|
||
|
||
// TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
|
||
// and upper triangular matrices.
|
||
|
||
// LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
|
||
func (lq *LQ) LTo(dst *Dense) {
|
||
r, c := lq.lq.Dims()
|
||
dst.reuseAs(r, c)
|
||
|
||
// Disguise the LQ as a lower triangular
|
||
t := &TriDense{
|
||
mat: blas64.Triangular{
|
||
N: r,
|
||
Stride: lq.lq.mat.Stride,
|
||
Data: lq.lq.mat.Data,
|
||
Uplo: blas.Lower,
|
||
Diag: blas.NonUnit,
|
||
},
|
||
cap: lq.lq.capCols,
|
||
}
|
||
dst.Copy(t)
|
||
|
||
if r == c {
|
||
return
|
||
}
|
||
// Zero right of the triangular.
|
||
for i := 0; i < r; i++ {
|
||
zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
|
||
}
|
||
}
|
||
|
||
// QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
|
||
func (lq *LQ) QTo(dst *Dense) {
|
||
r, c := lq.lq.Dims()
|
||
dst.reuseAs(c, c)
|
||
|
||
// Set Q = I.
|
||
for i := 0; i < c; i++ {
|
||
v := dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c]
|
||
zero(v)
|
||
v[i] = 1
|
||
}
|
||
|
||
// Construct Q from the elementary reflectors.
|
||
h := blas64.General{
|
||
Rows: c,
|
||
Cols: c,
|
||
Stride: c,
|
||
Data: make([]float64, c*c),
|
||
}
|
||
qCopy := getWorkspace(c, c, false)
|
||
v := blas64.Vector{
|
||
Inc: 1,
|
||
Data: make([]float64, c),
|
||
}
|
||
for i := 0; i < r; i++ {
|
||
// Set h = I.
|
||
zero(h.Data)
|
||
for j := 0; j < len(h.Data); j += c + 1 {
|
||
h.Data[j] = 1
|
||
}
|
||
|
||
// Set the vector data as the elementary reflector.
|
||
for j := 0; j < i; j++ {
|
||
v.Data[j] = 0
|
||
}
|
||
v.Data[i] = 1
|
||
for j := i + 1; j < c; j++ {
|
||
v.Data[j] = lq.lq.mat.Data[i*lq.lq.mat.Stride+j]
|
||
}
|
||
|
||
// Compute the multiplication matrix.
|
||
blas64.Ger(-lq.tau[i], v, v, h)
|
||
qCopy.Copy(dst)
|
||
blas64.Gemm(blas.NoTrans, blas.NoTrans,
|
||
1, h, qCopy.mat,
|
||
0, dst.mat)
|
||
}
|
||
}
|
||
|
||
// SolveLQ finds a minimum-norm solution to a system of linear equations defined
|
||
// by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
|
||
// form. If A is singular or near-singular a Condition error is returned. Please
|
||
// see the documentation for Condition for more information.
|
||
//
|
||
// The minimization problem solved depends on the input parameters.
|
||
// If trans == false, find the minimum norm solution of A * X = b.
|
||
// If trans == true, find X such that ||A*X - b||_2 is minimized.
|
||
// The solution matrix, X, is stored in place into the receiver.
|
||
func (m *Dense) SolveLQ(lq *LQ, trans bool, b Matrix) error {
|
||
r, c := lq.lq.Dims()
|
||
br, bc := b.Dims()
|
||
|
||
// The LQ solve algorithm stores the result in-place into the right hand side.
|
||
// The storage for the answer must be large enough to hold both b and x.
|
||
// However, this method's receiver must be the size of x. Copy b, and then
|
||
// copy the result into m at the end.
|
||
if trans {
|
||
if c != br {
|
||
panic(matrix.ErrShape)
|
||
}
|
||
m.reuseAs(r, bc)
|
||
} else {
|
||
if r != br {
|
||
panic(matrix.ErrShape)
|
||
}
|
||
m.reuseAs(c, bc)
|
||
}
|
||
// Do not need to worry about overlap between m and b because x has its own
|
||
// independent storage.
|
||
x := getWorkspace(max(r, c), bc, false)
|
||
x.Copy(b)
|
||
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
|
||
if trans {
|
||
work := make([]float64, 1)
|
||
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, -1)
|
||
work = make([]float64, int(work[0]))
|
||
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, len(work))
|
||
|
||
ok := lapack64.Trtrs(blas.Trans, t, x.mat)
|
||
if !ok {
|
||
return matrix.Condition(math.Inf(1))
|
||
}
|
||
} else {
|
||
ok := lapack64.Trtrs(blas.NoTrans, t, x.mat)
|
||
if !ok {
|
||
return matrix.Condition(math.Inf(1))
|
||
}
|
||
for i := r; i < c; i++ {
|
||
zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc])
|
||
}
|
||
work := make([]float64, 1)
|
||
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, -1)
|
||
work = make([]float64, int(work[0]))
|
||
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, len(work))
|
||
}
|
||
// M was set above to be the correct size for the result.
|
||
m.Copy(x)
|
||
putWorkspace(x)
|
||
if lq.cond > matrix.ConditionTolerance {
|
||
return matrix.Condition(lq.cond)
|
||
}
|
||
return nil
|
||
}
|
||
|
||
// SolveLQVec finds a minimum-norm solution to a system of linear equations.
|
||
// Please see Dense.SolveLQ for the full documentation.
|
||
func (v *Vector) SolveLQVec(lq *LQ, trans bool, b *Vector) error {
|
||
if v != b {
|
||
v.checkOverlap(b.mat)
|
||
}
|
||
r, c := lq.lq.Dims()
|
||
// The Solve implementation is non-trivial, so rather than duplicate the code,
|
||
// instead recast the Vectors as Dense and call the matrix code.
|
||
if trans {
|
||
v.reuseAs(r)
|
||
} else {
|
||
v.reuseAs(c)
|
||
}
|
||
return v.asDense().SolveLQ(lq, trans, b.asDense())
|
||
}
|