Files
gonum/matrix/mat64/lq.go

218 lines
5.9 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2013 The gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package mat64
import (
"math"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/lapack/lapack64"
"gonum.org/v1/gonum/matrix"
)
// LQ is a type for creating and using the LQ factorization of a matrix.
type LQ struct {
lq *Dense
tau []float64
cond float64
}
func (lq *LQ) updateCond() {
// A = LQ, where Q is orthonormal. Orthonormal multiplications do not change
// the condition number. Thus, ||A|| = ||L|| ||Q|| = ||Q||.
m := lq.lq.mat.Rows
work := make([]float64, 3*m)
iwork := make([]int, m)
l := lq.lq.asTriDense(m, blas.NonUnit, blas.Lower)
v := lapack64.Trcon(matrix.CondNorm, l.mat, work, iwork)
lq.cond = 1 / v
}
// Factorize computes the LQ factorization of an m×n matrix a where n <= m. The LQ
// factorization always exists even if A is singular.
//
// The LQ decomposition is a factorization of the matrix A such that A = L * Q.
// The matrix Q is an orthonormal n×n matrix, and L is an m×n upper triangular matrix.
// L and Q can be extracted from the LTo and QTo methods.
func (lq *LQ) Factorize(a Matrix) {
m, n := a.Dims()
if m > n {
panic(matrix.ErrShape)
}
k := min(m, n)
if lq.lq == nil {
lq.lq = &Dense{}
}
lq.lq.Clone(a)
work := make([]float64, 1)
lq.tau = make([]float64, k)
lapack64.Gelqf(lq.lq.mat, lq.tau, work, -1)
work = make([]float64, int(work[0]))
lapack64.Gelqf(lq.lq.mat, lq.tau, work, len(work))
lq.updateCond()
}
// TODO(btracey): Add in the "Reduced" forms for extracting the m×m orthogonal
// and upper triangular matrices.
// LTo extracts the m×n lower trapezoidal matrix from a LQ decomposition.
func (lq *LQ) LTo(dst *Dense) {
r, c := lq.lq.Dims()
dst.reuseAs(r, c)
// Disguise the LQ as a lower triangular
t := &TriDense{
mat: blas64.Triangular{
N: r,
Stride: lq.lq.mat.Stride,
Data: lq.lq.mat.Data,
Uplo: blas.Lower,
Diag: blas.NonUnit,
},
cap: lq.lq.capCols,
}
dst.Copy(t)
if r == c {
return
}
// Zero right of the triangular.
for i := 0; i < r; i++ {
zero(dst.mat.Data[i*dst.mat.Stride+r : i*dst.mat.Stride+c])
}
}
// QTo extracts the n×n orthonormal matrix Q from an LQ decomposition.
func (lq *LQ) QTo(dst *Dense) {
r, c := lq.lq.Dims()
dst.reuseAs(c, c)
// Set Q = I.
for i := 0; i < c; i++ {
v := dst.mat.Data[i*dst.mat.Stride : i*dst.mat.Stride+c]
zero(v)
v[i] = 1
}
// Construct Q from the elementary reflectors.
h := blas64.General{
Rows: c,
Cols: c,
Stride: c,
Data: make([]float64, c*c),
}
qCopy := getWorkspace(c, c, false)
v := blas64.Vector{
Inc: 1,
Data: make([]float64, c),
}
for i := 0; i < r; i++ {
// Set h = I.
zero(h.Data)
for j := 0; j < len(h.Data); j += c + 1 {
h.Data[j] = 1
}
// Set the vector data as the elementary reflector.
for j := 0; j < i; j++ {
v.Data[j] = 0
}
v.Data[i] = 1
for j := i + 1; j < c; j++ {
v.Data[j] = lq.lq.mat.Data[i*lq.lq.mat.Stride+j]
}
// Compute the multiplication matrix.
blas64.Ger(-lq.tau[i], v, v, h)
qCopy.Copy(dst)
blas64.Gemm(blas.NoTrans, blas.NoTrans,
1, h, qCopy.mat,
0, dst.mat)
}
}
// SolveLQ finds a minimum-norm solution to a system of linear equations defined
// by the matrices A and b, where A is an m×n matrix represented in its LQ factorized
// form. If A is singular or near-singular a Condition error is returned. Please
// see the documentation for Condition for more information.
//
// The minimization problem solved depends on the input parameters.
// If trans == false, find the minimum norm solution of A * X = b.
// If trans == true, find X such that ||A*X - b||_2 is minimized.
// The solution matrix, X, is stored in place into the receiver.
func (m *Dense) SolveLQ(lq *LQ, trans bool, b Matrix) error {
r, c := lq.lq.Dims()
br, bc := b.Dims()
// The LQ solve algorithm stores the result in-place into the right hand side.
// The storage for the answer must be large enough to hold both b and x.
// However, this method's receiver must be the size of x. Copy b, and then
// copy the result into m at the end.
if trans {
if c != br {
panic(matrix.ErrShape)
}
m.reuseAs(r, bc)
} else {
if r != br {
panic(matrix.ErrShape)
}
m.reuseAs(c, bc)
}
// Do not need to worry about overlap between m and b because x has its own
// independent storage.
x := getWorkspace(max(r, c), bc, false)
x.Copy(b)
t := lq.lq.asTriDense(lq.lq.mat.Rows, blas.NonUnit, blas.Lower).mat
if trans {
work := make([]float64, 1)
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, -1)
work = make([]float64, int(work[0]))
lapack64.Ormlq(blas.Left, blas.NoTrans, lq.lq.mat, lq.tau, x.mat, work, len(work))
ok := lapack64.Trtrs(blas.Trans, t, x.mat)
if !ok {
return matrix.Condition(math.Inf(1))
}
} else {
ok := lapack64.Trtrs(blas.NoTrans, t, x.mat)
if !ok {
return matrix.Condition(math.Inf(1))
}
for i := r; i < c; i++ {
zero(x.mat.Data[i*x.mat.Stride : i*x.mat.Stride+bc])
}
work := make([]float64, 1)
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, -1)
work = make([]float64, int(work[0]))
lapack64.Ormlq(blas.Left, blas.Trans, lq.lq.mat, lq.tau, x.mat, work, len(work))
}
// M was set above to be the correct size for the result.
m.Copy(x)
putWorkspace(x)
if lq.cond > matrix.ConditionTolerance {
return matrix.Condition(lq.cond)
}
return nil
}
// SolveLQVec finds a minimum-norm solution to a system of linear equations.
// Please see Dense.SolveLQ for the full documentation.
func (v *Vector) SolveLQVec(lq *LQ, trans bool, b *Vector) error {
if v != b {
v.checkOverlap(b.mat)
}
r, c := lq.lq.Dims()
// The Solve implementation is non-trivial, so rather than duplicate the code,
// instead recast the Vectors as Dense and call the matrix code.
if trans {
v.reuseAs(r)
} else {
v.reuseAs(c)
}
return v.asDense().SolveLQ(lq, trans, b.asDense())
}