mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 15:16:59 +08:00
302 lines
8.7 KiB
Go
302 lines
8.7 KiB
Go
// Copyright ©2014 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package simple
|
|
|
|
import (
|
|
"sort"
|
|
|
|
"gonum.org/v1/gonum/graph"
|
|
"gonum.org/v1/gonum/graph/internal/ordered"
|
|
"gonum.org/v1/gonum/graph/iterator"
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
var (
|
|
dm *DirectedMatrix
|
|
|
|
_ graph.Graph = dm
|
|
_ graph.Directed = dm
|
|
_ edgeSetter = dm
|
|
_ weightedEdgeSetter = dm
|
|
)
|
|
|
|
// DirectedMatrix represents a directed graph using an adjacency
|
|
// matrix such that all IDs are in a contiguous block from 0 to n-1.
|
|
// Edges are stored implicitly as an edge weight, so edges stored in
|
|
// the graph are not recoverable.
|
|
type DirectedMatrix struct {
|
|
mat *mat.Dense
|
|
nodes []graph.Node
|
|
|
|
self float64
|
|
absent float64
|
|
}
|
|
|
|
// NewDirectedMatrix creates a directed dense graph with n nodes.
|
|
// All edges are initialized with the weight given by init. The self parameter
|
|
// specifies the cost of self connection, and absent specifies the weight
|
|
// returned for absent edges.
|
|
func NewDirectedMatrix(n int, init, self, absent float64) *DirectedMatrix {
|
|
matrix := make([]float64, n*n)
|
|
if init != 0 {
|
|
for i := range matrix {
|
|
matrix[i] = init
|
|
}
|
|
}
|
|
for i := 0; i < len(matrix); i += n + 1 {
|
|
matrix[i] = self
|
|
}
|
|
return &DirectedMatrix{
|
|
mat: mat.NewDense(n, n, matrix),
|
|
self: self,
|
|
absent: absent,
|
|
}
|
|
}
|
|
|
|
// NewDirectedMatrixFrom creates a directed dense graph with the given nodes.
|
|
// The IDs of the nodes must be contiguous from 0 to len(nodes)-1, but may
|
|
// be in any order. If IDs are not contiguous NewDirectedMatrixFrom will panic.
|
|
// All edges are initialized with the weight given by init. The self parameter
|
|
// specifies the cost of self connection, and absent specifies the weight
|
|
// returned for absent edges.
|
|
func NewDirectedMatrixFrom(nodes []graph.Node, init, self, absent float64) *DirectedMatrix {
|
|
sort.Sort(ordered.ByID(nodes))
|
|
for i, n := range nodes {
|
|
if int64(i) != n.ID() {
|
|
panic("simple: non-contiguous node IDs")
|
|
}
|
|
}
|
|
g := NewDirectedMatrix(len(nodes), init, self, absent)
|
|
g.nodes = nodes
|
|
return g
|
|
}
|
|
|
|
// Edge returns the edge from u to v if such an edge exists and nil otherwise.
|
|
// The node v must be directly reachable from u as defined by the From method.
|
|
func (g *DirectedMatrix) Edge(uid, vid int64) graph.Edge {
|
|
return g.WeightedEdge(uid, vid)
|
|
}
|
|
|
|
// Edges returns all the edges in the graph.
|
|
func (g *DirectedMatrix) Edges() graph.Edges {
|
|
var edges []graph.Edge
|
|
r, _ := g.mat.Dims()
|
|
for i := 0; i < r; i++ {
|
|
for j := 0; j < r; j++ {
|
|
if i == j {
|
|
continue
|
|
}
|
|
if w := g.mat.At(i, j); !isSame(w, g.absent) {
|
|
edges = append(edges, WeightedEdge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w})
|
|
}
|
|
}
|
|
}
|
|
if len(edges) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewOrderedEdges(edges)
|
|
}
|
|
|
|
// From returns all nodes in g that can be reached directly from n.
|
|
func (g *DirectedMatrix) From(id int64) graph.Nodes {
|
|
if !g.has(id) {
|
|
return graph.Empty
|
|
}
|
|
var nodes []graph.Node
|
|
_, c := g.mat.Dims()
|
|
for j := 0; j < c; j++ {
|
|
if int64(j) == id {
|
|
continue
|
|
}
|
|
// id is not greater than maximum int by this point.
|
|
if !isSame(g.mat.At(int(id), j), g.absent) {
|
|
nodes = append(nodes, g.Node(int64(j)))
|
|
}
|
|
}
|
|
if len(nodes) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewOrderedNodes(nodes)
|
|
}
|
|
|
|
// HasEdgeBetween returns whether an edge exists between nodes x and y without
|
|
// considering direction.
|
|
func (g *DirectedMatrix) HasEdgeBetween(xid, yid int64) bool {
|
|
if !g.has(xid) {
|
|
return false
|
|
}
|
|
if !g.has(yid) {
|
|
return false
|
|
}
|
|
// xid and yid are not greater than maximum int by this point.
|
|
return xid != yid && (!isSame(g.mat.At(int(xid), int(yid)), g.absent) || !isSame(g.mat.At(int(yid), int(xid)), g.absent))
|
|
}
|
|
|
|
// HasEdgeFromTo returns whether an edge exists in the graph from u to v.
|
|
func (g *DirectedMatrix) HasEdgeFromTo(uid, vid int64) bool {
|
|
if !g.has(uid) {
|
|
return false
|
|
}
|
|
if !g.has(vid) {
|
|
return false
|
|
}
|
|
// uid and vid are not greater than maximum int by this point.
|
|
return uid != vid && !isSame(g.mat.At(int(uid), int(vid)), g.absent)
|
|
}
|
|
|
|
// Matrix returns the mat.Matrix representation of the graph. The orientation
|
|
// of the matrix is such that the matrix entry at G_{ij} is the weight of the edge
|
|
// from node i to node j.
|
|
func (g *DirectedMatrix) Matrix() mat.Matrix {
|
|
// Prevent alteration of dimensions of the returned matrix.
|
|
m := *g.mat
|
|
return &m
|
|
}
|
|
|
|
// Node returns the node with the given ID if it exists in the graph,
|
|
// and nil otherwise.
|
|
func (g *DirectedMatrix) Node(id int64) graph.Node {
|
|
if !g.has(id) {
|
|
return nil
|
|
}
|
|
if g.nodes == nil {
|
|
return Node(id)
|
|
}
|
|
return g.nodes[id]
|
|
}
|
|
|
|
// Nodes returns all the nodes in the graph.
|
|
func (g *DirectedMatrix) Nodes() graph.Nodes {
|
|
if g.nodes != nil {
|
|
nodes := make([]graph.Node, len(g.nodes))
|
|
copy(nodes, g.nodes)
|
|
return iterator.NewOrderedNodes(nodes)
|
|
}
|
|
r, _ := g.mat.Dims()
|
|
// Matrix graphs must have at least one node.
|
|
return iterator.NewImplicitNodes(0, r, newSimpleNode)
|
|
}
|
|
|
|
// RemoveEdge removes the edge with the given end point nodes from the graph, leaving the terminal
|
|
// nodes. If the edge does not exist it is a no-op.
|
|
func (g *DirectedMatrix) RemoveEdge(fid, tid int64) {
|
|
if !g.has(fid) {
|
|
return
|
|
}
|
|
if !g.has(tid) {
|
|
return
|
|
}
|
|
// fid and tid are not greater than maximum int by this point.
|
|
g.mat.Set(int(fid), int(tid), g.absent)
|
|
}
|
|
|
|
// SetEdge sets e, an edge from one node to another with unit weight. If the ends of the edge
|
|
// are not in g or the edge is a self loop, SetEdge panics. SetEdge will store the nodes of
|
|
// e in the graph if it was initialized with NewDirectedMatrixFrom.
|
|
func (g *DirectedMatrix) SetEdge(e graph.Edge) {
|
|
g.setWeightedEdge(e, 1)
|
|
}
|
|
|
|
// SetWeightedEdge sets e, an edge from one node to another. If the ends of the edge are not in g
|
|
// or the edge is a self loop, SetWeightedEdge panics. SetWeightedEdge will store the nodes of
|
|
// e in the graph if it was initialized with NewDirectedMatrixFrom.
|
|
func (g *DirectedMatrix) SetWeightedEdge(e graph.WeightedEdge) {
|
|
g.setWeightedEdge(e, e.Weight())
|
|
}
|
|
|
|
func (g *DirectedMatrix) setWeightedEdge(e graph.Edge, weight float64) {
|
|
from := e.From()
|
|
fid := from.ID()
|
|
to := e.To()
|
|
tid := to.ID()
|
|
if fid == tid {
|
|
panic("simple: set illegal edge")
|
|
}
|
|
if int64(int(fid)) != fid {
|
|
panic("simple: unavailable from node ID for dense graph")
|
|
}
|
|
if int64(int(tid)) != tid {
|
|
panic("simple: unavailable to node ID for dense graph")
|
|
}
|
|
if g.nodes != nil {
|
|
g.nodes[fid] = from
|
|
g.nodes[tid] = to
|
|
}
|
|
// fid and tid are not greater than maximum int by this point.
|
|
g.mat.Set(int(fid), int(tid), weight)
|
|
}
|
|
|
|
// To returns all nodes in g that can reach directly to n.
|
|
func (g *DirectedMatrix) To(id int64) graph.Nodes {
|
|
if !g.has(id) {
|
|
return graph.Empty
|
|
}
|
|
var nodes []graph.Node
|
|
r, _ := g.mat.Dims()
|
|
for i := 0; i < r; i++ {
|
|
if int64(i) == id {
|
|
continue
|
|
}
|
|
// id is not greater than maximum int by this point.
|
|
if !isSame(g.mat.At(i, int(id)), g.absent) {
|
|
nodes = append(nodes, g.Node(int64(i)))
|
|
}
|
|
}
|
|
if len(nodes) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewOrderedNodes(nodes)
|
|
}
|
|
|
|
// Weight returns the weight for the edge between x and y if Edge(x, y) returns a non-nil Edge.
|
|
// If x and y are the same node or there is no joining edge between the two nodes the weight
|
|
// value returned is either the graph's absent or self value. Weight returns true if an edge
|
|
// exists between x and y or if x and y have the same ID, false otherwise.
|
|
func (g *DirectedMatrix) Weight(xid, yid int64) (w float64, ok bool) {
|
|
if xid == yid {
|
|
return g.self, true
|
|
}
|
|
if g.HasEdgeFromTo(xid, yid) {
|
|
// xid and yid are not greater than maximum int by this point.
|
|
return g.mat.At(int(xid), int(yid)), true
|
|
}
|
|
return g.absent, false
|
|
}
|
|
|
|
// WeightedEdge returns the weighted edge from u to v if such an edge exists and nil otherwise.
|
|
// The node v must be directly reachable from u as defined by the From method.
|
|
func (g *DirectedMatrix) WeightedEdge(uid, vid int64) graph.WeightedEdge {
|
|
if g.HasEdgeFromTo(uid, vid) {
|
|
// xid and yid are not greater than maximum int by this point.
|
|
return WeightedEdge{F: g.Node(uid), T: g.Node(vid), W: g.mat.At(int(uid), int(vid))}
|
|
}
|
|
return nil
|
|
}
|
|
|
|
// WeightedEdges returns all the edges in the graph.
|
|
func (g *DirectedMatrix) WeightedEdges() graph.WeightedEdges {
|
|
var edges []graph.WeightedEdge
|
|
r, _ := g.mat.Dims()
|
|
for i := 0; i < r; i++ {
|
|
for j := 0; j < r; j++ {
|
|
if i == j {
|
|
continue
|
|
}
|
|
if w := g.mat.At(i, j); !isSame(w, g.absent) {
|
|
edges = append(edges, WeightedEdge{F: g.Node(int64(i)), T: g.Node(int64(j)), W: w})
|
|
}
|
|
}
|
|
}
|
|
if len(edges) == 0 {
|
|
return graph.Empty
|
|
}
|
|
return iterator.NewOrderedWeightedEdges(edges)
|
|
}
|
|
|
|
func (g *DirectedMatrix) has(id int64) bool {
|
|
r, _ := g.mat.Dims()
|
|
return 0 <= id && id < int64(r)
|
|
}
|