Files
gonum/lapack/testlapack/dorgtr.go
Dan Kortschak 17ea55aedb blas,lapack: clean up docs and comments
Apply (with manual curation after the fact):
* s/^T/U+1d40/g
* s/^H/U+1d34/g
* s/, {2,3}if / $1/g

Some additional manual editing of odd formatting.
2019-09-06 20:02:29 +09:30

162 lines
4.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2016 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
"gonum.org/v1/gonum/floats"
)
type Dorgtrer interface {
Dorgtr(uplo blas.Uplo, n int, a []float64, lda int, tau, work []float64, lwork int)
Dsytrder
}
func DorgtrTest(t *testing.T, impl Dorgtrer) {
rnd := rand.New(rand.NewSource(1))
for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} {
for _, wl := range []worklen{minimumWork, mediumWork, optimumWork} {
for _, test := range []struct {
n, lda int
}{
{1, 0},
{2, 0},
{3, 0},
{6, 0},
{33, 0},
{100, 0},
{1, 3},
{2, 5},
{3, 7},
{6, 10},
{33, 50},
{100, 120},
} {
n := test.n
lda := test.lda
if lda == 0 {
lda = n
}
// Allocate n×n matrix A and fill it with random numbers.
a := make([]float64, n*lda)
for i := range a {
a[i] = rnd.NormFloat64()
}
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Allocate slices for the main diagonal and the
// first off-diagonal of the tri-diagonal matrix.
d := make([]float64, n)
e := make([]float64, n-1)
// Allocate slice for elementary reflector scales.
tau := make([]float64, n-1)
// Compute optimum workspace size for Dorgtr call.
work := make([]float64, 1)
impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, -1)
work = make([]float64, int(work[0]))
// Compute elementary reflectors that reduce the
// symmetric matrix defined by the uplo triangle
// of A to a tridiagonal matrix.
impl.Dsytrd(uplo, n, a, lda, d, e, tau, work, len(work))
// Compute workspace size for Dorgtr call.
var lwork int
switch wl {
case minimumWork:
lwork = max(1, n-1)
case mediumWork:
work := make([]float64, 1)
impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
lwork = (int(work[0]) + n - 1) / 2
lwork = max(1, lwork)
case optimumWork:
work := make([]float64, 1)
impl.Dorgtr(uplo, n, a, lda, tau, work, -1)
lwork = int(work[0])
}
work = nanSlice(lwork)
// Generate an orthogonal matrix Q that reduces
// the uplo triangle of A to a tridiagonal matrix.
impl.Dorgtr(uplo, n, a, lda, tau, work, len(work))
q := blas64.General{
Rows: n,
Cols: n,
Stride: lda,
Data: a,
}
if !isOrthogonal(q) {
t.Errorf("Case uplo=%v,n=%v: Q is not orthogonal", uplo, n)
continue
}
// Create the tridiagonal matrix explicitly in
// dense representation from the diagonals d and e.
tri := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
for i := 0; i < n; i++ {
tri.Data[i*tri.Stride+i] = d[i]
if i != n-1 {
tri.Data[i*tri.Stride+i+1] = e[i]
tri.Data[(i+1)*tri.Stride+i] = e[i]
}
}
// Create the symmetric matrix A from the uplo
// triangle of aCopy, storing it explicitly in dense form.
aMat := blas64.General{
Rows: n,
Cols: n,
Stride: n,
Data: make([]float64, n*n),
}
if uplo == blas.Upper {
for i := 0; i < n; i++ {
for j := i; j < n; j++ {
v := aCopy[i*lda+j]
aMat.Data[i*aMat.Stride+j] = v
aMat.Data[j*aMat.Stride+i] = v
}
}
} else {
for i := 0; i < n; i++ {
for j := 0; j <= i; j++ {
v := aCopy[i*lda+j]
aMat.Data[i*aMat.Stride+j] = v
aMat.Data[j*aMat.Stride+i] = v
}
}
}
// Compute Qᵀ * A * Q and store the result in ans.
tmp := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, aMat, q, 0, tmp)
ans := blas64.General{Rows: n, Cols: n, Stride: n, Data: make([]float64, n*n)}
blas64.Gemm(blas.Trans, blas.NoTrans, 1, q, tmp, 0, ans)
// Compare the tridiagonal matrix tri from
// Dorgtr with the explicit computation ans.
if !floats.EqualApprox(ans.Data, tri.Data, 1e-13) {
t.Errorf("Recombination mismatch. n = %v, isUpper = %v", n, uplo == blas.Upper)
}
}
}
}
}