Files
gonum/lapack/testlapack/dgeqp3.go
2018-12-12 11:53:36 +01:00

140 lines
3.2 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package testlapack
import (
"testing"
"golang.org/x/exp/rand"
"gonum.org/v1/gonum/blas"
"gonum.org/v1/gonum/blas/blas64"
)
type Dgeqp3er interface {
Dlapmter
Dgeqp3(m, n int, a []float64, lda int, jpvt []int, tau, work []float64, lwork int)
}
func Dgeqp3Test(t *testing.T, impl Dgeqp3er) {
rnd := rand.New(rand.NewSource(1))
for c, test := range []struct {
m, n, lda int
}{
{1, 1, 0},
{2, 2, 0},
{3, 2, 0},
{2, 3, 0},
{1, 12, 0},
{2, 6, 0},
{3, 4, 0},
{4, 3, 0},
{6, 2, 0},
{12, 1, 0},
{1, 1, 20},
{2, 2, 20},
{3, 2, 20},
{2, 3, 20},
{1, 12, 20},
{2, 6, 20},
{3, 4, 20},
{4, 3, 20},
{6, 2, 20},
{12, 1, 20},
{129, 256, 0},
{256, 129, 0},
{129, 256, 266},
{256, 129, 266},
} {
n := test.n
m := test.m
lda := test.lda
if lda == 0 {
lda = test.n
}
const (
all = iota
some
none
)
for _, free := range []int{all, some, none} {
// Allocate m×n matrix A and fill it with random numbers.
a := make([]float64, m*lda)
for i := range a {
a[i] = rnd.Float64()
}
// Store a copy of A for later comparison.
aCopy := make([]float64, len(a))
copy(aCopy, a)
// Allocate a slice of column pivots.
jpvt := make([]int, n)
for j := range jpvt {
switch free {
case all:
// All columns are free.
jpvt[j] = -1
case some:
// Some columns are free, some are leading columns.
jpvt[j] = rnd.Intn(2) - 1 // -1 or 0
case none:
// All columns are leading.
jpvt[j] = 0
default:
panic("bad freedom")
}
}
// Allocate a slice for scalar factors of elementary
// reflectors and fill it with random numbers. Dgeqp3
// will overwrite them with valid data.
k := min(m, n)
tau := make([]float64, k)
for i := range tau {
tau[i] = rnd.Float64()
}
// Get optimal workspace size for Dgeqp3.
work := make([]float64, 1)
impl.Dgeqp3(m, n, a, lda, jpvt, tau, work, -1)
lwork := int(work[0])
work = make([]float64, lwork)
for i := range work {
work[i] = rnd.Float64()
}
// Compute a QR factorization of A with column pivoting.
impl.Dgeqp3(m, n, a, lda, jpvt, tau, work, lwork)
// Compute Q based on the elementary reflectors stored in A.
q := constructQ("QR", m, n, a, lda, tau)
// Check that Q is orthogonal.
if !isOrthogonal(q) {
t.Errorf("Case %v, Q not orthogonal", c)
}
// Copy the upper triangle of A into R.
r := blas64.General{
Rows: m,
Cols: n,
Stride: n,
Data: make([]float64, m*n),
}
for i := 0; i < m; i++ {
for j := i; j < n; j++ {
r.Data[i*n+j] = a[i*lda+j]
}
}
// Compute Q * R.
got := nanGeneral(m, n, lda)
blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, q, r, 0, got)
// Compute A * P: rearrange the columns of A based on the permutation in jpvt.
want := blas64.General{Rows: m, Cols: n, Stride: lda, Data: aCopy}
impl.Dlapmt(true, want.Rows, want.Cols, want.Data, want.Stride, jpvt)
// Check that A * P = Q * R.
if !equalApproxGeneral(got, want, 1e-13) {
t.Errorf("Case %v, Q*R != A*P\nQ*R=%v\nA*P=%v", c, got, want)
}
}
}
}