mirror of
https://github.com/gonum/gonum.git
synced 2025-10-28 09:31:40 +08:00
368 lines
9.4 KiB
Go
368 lines
9.4 KiB
Go
// Copyright ©2020 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package interp
|
|
|
|
import (
|
|
"math"
|
|
"sort"
|
|
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
const (
|
|
differentLengths = "interp: input slices have different lengths"
|
|
tooFewPoints = "interp: too few points for interpolation"
|
|
xsNotStrictlyIncreasing = "interp: xs values not strictly increasing"
|
|
)
|
|
|
|
// Predictor predicts the value of a function. It handles both
|
|
// interpolation and extrapolation.
|
|
type Predictor interface {
|
|
// Predict returns the predicted value at x.
|
|
Predict(x float64) float64
|
|
}
|
|
|
|
// Fitter fits a predictor to data.
|
|
type Fitter interface {
|
|
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
|
|
// It panics if len(xs) < 2, elements of xs are not strictly increasing
|
|
// or len(xs) != len(ys). Returns an error if fitting fails.
|
|
Fit(xs, ys []float64) error
|
|
}
|
|
|
|
// FittablePredictor is a Predictor which can fit itself to data.
|
|
type FittablePredictor interface {
|
|
Fitter
|
|
Predictor
|
|
}
|
|
|
|
// DerivativePredictor predicts both the value and the derivative of
|
|
// a function. It handles both interpolation and extrapolation.
|
|
type DerivativePredictor interface {
|
|
Predictor
|
|
|
|
// PredictDerivative returns the predicted derivative at x.
|
|
PredictDerivative(x float64) float64
|
|
}
|
|
|
|
// Constant predicts a constant value.
|
|
type Constant float64
|
|
|
|
// Predict returns the predicted value at x.
|
|
func (c Constant) Predict(x float64) float64 {
|
|
return float64(c)
|
|
}
|
|
|
|
// Function predicts by evaluating itself.
|
|
type Function func(float64) float64
|
|
|
|
// Predict returns the predicted value at x by evaluating fn(x).
|
|
func (fn Function) Predict(x float64) float64 {
|
|
return fn(x)
|
|
}
|
|
|
|
// PiecewiseLinear is a piecewise linear 1-dimensional interpolator.
|
|
type PiecewiseLinear struct {
|
|
// Interpolated X values.
|
|
xs []float64
|
|
|
|
// Interpolated Y data values, same len as ys.
|
|
ys []float64
|
|
|
|
// Slopes of Y between neighbouring X values. len(slopes) + 1 == len(xs) == len(ys).
|
|
slopes []float64
|
|
}
|
|
|
|
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
|
|
// It panics if len(xs) < 2, elements of xs are not strictly increasing
|
|
// or len(xs) != len(ys). Always returns nil.
|
|
func (pl *PiecewiseLinear) Fit(xs, ys []float64) error {
|
|
n := len(xs)
|
|
if len(ys) != n {
|
|
panic(differentLengths)
|
|
}
|
|
if n < 2 {
|
|
panic(tooFewPoints)
|
|
}
|
|
m := n - 1
|
|
pl.slopes = make([]float64, m)
|
|
for i := 0; i < m; i++ {
|
|
dx := xs[i+1] - xs[i]
|
|
if dx <= 0 {
|
|
panic(xsNotStrictlyIncreasing)
|
|
}
|
|
pl.slopes[i] = (ys[i+1] - ys[i]) / dx
|
|
}
|
|
pl.xs = make([]float64, n)
|
|
pl.ys = make([]float64, n)
|
|
copy(pl.xs, xs)
|
|
copy(pl.ys, ys)
|
|
return nil
|
|
}
|
|
|
|
// Predict returns the interpolation value at x.
|
|
func (pl PiecewiseLinear) Predict(x float64) float64 {
|
|
i := findSegment(pl.xs, x)
|
|
if i < 0 {
|
|
return pl.ys[0]
|
|
}
|
|
xI := pl.xs[i]
|
|
if x == xI {
|
|
return pl.ys[i]
|
|
}
|
|
n := len(pl.xs)
|
|
if i == n-1 {
|
|
return pl.ys[n-1]
|
|
}
|
|
return pl.ys[i] + pl.slopes[i]*(x-xI)
|
|
}
|
|
|
|
// PiecewiseConstant is a left-continous, piecewise constant
|
|
// 1-dimensional interpolator.
|
|
type PiecewiseConstant struct {
|
|
// Interpolated X values.
|
|
xs []float64
|
|
|
|
// Interpolated Y data values, same len as ys.
|
|
ys []float64
|
|
}
|
|
|
|
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
|
|
// It panics if len(xs) < 2, elements of xs are not strictly increasing
|
|
// or len(xs) != len(ys). Always returns nil.
|
|
func (pc *PiecewiseConstant) Fit(xs, ys []float64) error {
|
|
n := len(xs)
|
|
if len(ys) != n {
|
|
panic(differentLengths)
|
|
}
|
|
if n < 2 {
|
|
panic(tooFewPoints)
|
|
}
|
|
for i := 1; i < n; i++ {
|
|
if xs[i] <= xs[i-1] {
|
|
panic(xsNotStrictlyIncreasing)
|
|
}
|
|
}
|
|
pc.xs = make([]float64, n)
|
|
pc.ys = make([]float64, n)
|
|
copy(pc.xs, xs)
|
|
copy(pc.ys, ys)
|
|
return nil
|
|
}
|
|
|
|
// Predict returns the interpolation value at x.
|
|
func (pc PiecewiseConstant) Predict(x float64) float64 {
|
|
i := findSegment(pc.xs, x)
|
|
if i < 0 {
|
|
return pc.ys[0]
|
|
}
|
|
if x == pc.xs[i] {
|
|
return pc.ys[i]
|
|
}
|
|
n := len(pc.xs)
|
|
if i == n-1 {
|
|
return pc.ys[n-1]
|
|
}
|
|
return pc.ys[i+1]
|
|
}
|
|
|
|
// PiecewiseCubic is a piecewise cubic 1-dimensional interpolator with
|
|
// continuous value and first derivative.
|
|
type PiecewiseCubic struct {
|
|
// Interpolated X values.
|
|
xs []float64
|
|
|
|
// Coefficients of interpolating cubic polynomials, with
|
|
// len(xs) - 1 rows and 4 columns. The interpolated value
|
|
// for xs[i] <= x < xs[i + 1] is defined as
|
|
// sum_{k = 0}^3 coeffs.At(i, k) * (x - xs[i])^k
|
|
// To guarantee left-continuity, coeffs.At(i, 0) == ys[i].
|
|
coeffs mat.Dense
|
|
|
|
// Last interpolated Y value, corresponding to xs[len(xs) - 1].
|
|
lastY float64
|
|
|
|
// Last interpolated dY/dX value, corresponding to xs[len(xs) - 1].
|
|
lastDyDx float64
|
|
}
|
|
|
|
// Predict returns the interpolation value at x.
|
|
func (pc *PiecewiseCubic) Predict(x float64) float64 {
|
|
i := findSegment(pc.xs, x)
|
|
if i < 0 {
|
|
return pc.coeffs.At(0, 0)
|
|
}
|
|
m := len(pc.xs) - 1
|
|
if x == pc.xs[i] {
|
|
if i < m {
|
|
return pc.coeffs.At(i, 0)
|
|
}
|
|
return pc.lastY
|
|
}
|
|
if i == m {
|
|
return pc.lastY
|
|
}
|
|
dx := x - pc.xs[i]
|
|
a := pc.coeffs.RawRowView(i)
|
|
return ((a[3]*dx+a[2])*dx+a[1])*dx + a[0]
|
|
}
|
|
|
|
// PredictDerivative returns the predicted derivative at x.
|
|
func (pc *PiecewiseCubic) PredictDerivative(x float64) float64 {
|
|
i := findSegment(pc.xs, x)
|
|
if i < 0 {
|
|
return pc.coeffs.At(0, 1)
|
|
}
|
|
m := len(pc.xs) - 1
|
|
if x == pc.xs[i] {
|
|
if i < m {
|
|
return pc.coeffs.At(i, 1)
|
|
}
|
|
return pc.lastDyDx
|
|
}
|
|
if i == m {
|
|
return pc.lastDyDx
|
|
}
|
|
dx := x - pc.xs[i]
|
|
a := pc.coeffs.RawRowView(i)
|
|
return (3*a[3]*dx+2*a[2])*dx + a[1]
|
|
}
|
|
|
|
// FitWithDerivatives fits a piecewise cubic predictor to (X, Y, dY/dX) value
|
|
// triples provided as three slices.
|
|
// It panics if len(xs) < 2, elements of xs are not strictly increasing,
|
|
// len(xs) != len(ys) or len(xs) != len(dydxs).
|
|
func (pc *PiecewiseCubic) FitWithDerivatives(xs, ys, dydxs []float64) {
|
|
n := len(xs)
|
|
if len(ys) != n {
|
|
panic(differentLengths)
|
|
}
|
|
if len(dydxs) != n {
|
|
panic(differentLengths)
|
|
}
|
|
if n < 2 {
|
|
panic(tooFewPoints)
|
|
}
|
|
m := n - 1
|
|
pc.coeffs.Reset()
|
|
pc.coeffs.ReuseAs(m, 4)
|
|
for i := 0; i < m; i++ {
|
|
dx := xs[i+1] - xs[i]
|
|
if dx <= 0 {
|
|
panic(xsNotStrictlyIncreasing)
|
|
}
|
|
dy := ys[i+1] - ys[i]
|
|
// a_0
|
|
pc.coeffs.Set(i, 0, ys[i])
|
|
// a_1
|
|
pc.coeffs.Set(i, 1, dydxs[i])
|
|
// Solve a linear equation system for a_2 and a_3.
|
|
pc.coeffs.Set(i, 2, (3*dy-(2*dydxs[i]+dydxs[i+1])*dx)/dx/dx)
|
|
pc.coeffs.Set(i, 3, (-2*dy+(dydxs[i]+dydxs[i+1])*dx)/dx/dx/dx)
|
|
}
|
|
pc.xs = make([]float64, n)
|
|
copy(pc.xs, xs)
|
|
pc.lastY = ys[m]
|
|
pc.lastDyDx = dydxs[m]
|
|
}
|
|
|
|
// AkimaSpline is a piecewise cubic 1-dimensional interpolator with
|
|
// continuous value and first derivative, which can be fitted to (X, Y)
|
|
// value pairs without providing derivatives.
|
|
// See https://www.iue.tuwien.ac.at/phd/rottinger/node60.html for more details.
|
|
type AkimaSpline struct {
|
|
cubic PiecewiseCubic
|
|
}
|
|
|
|
// Predict returns the interpolation value at x.
|
|
func (as *AkimaSpline) Predict(x float64) float64 {
|
|
return as.cubic.Predict(x)
|
|
}
|
|
|
|
// PredictDerivative returns the predicted derivative at x.
|
|
func (as *AkimaSpline) PredictDerivative(x float64) float64 {
|
|
return as.cubic.PredictDerivative(x)
|
|
}
|
|
|
|
// Fit fits a predictor to (X, Y) value pairs provided as two slices.
|
|
// It panics if len(xs) < 2, elements of xs are not strictly increasing
|
|
// or len(xs) != len(ys). Always returns nil.
|
|
func (as *AkimaSpline) Fit(xs, ys []float64) error {
|
|
n := len(xs)
|
|
if len(ys) != n {
|
|
panic(differentLengths)
|
|
}
|
|
dydxs := make([]float64, n)
|
|
|
|
if n == 2 {
|
|
dx := xs[1] - xs[0]
|
|
slope := (ys[1] - ys[0]) / dx
|
|
dydxs[0] = slope
|
|
dydxs[1] = slope
|
|
as.cubic.FitWithDerivatives(xs, ys, dydxs)
|
|
return nil
|
|
}
|
|
slopes := akimaSlopes(xs, ys)
|
|
for i := 0; i < n; i++ {
|
|
wLeft, wRight := akimaWeights(slopes, i)
|
|
dydxs[i] = akimaWeightedAverage(slopes[i+1], slopes[i+2], wLeft, wRight)
|
|
}
|
|
as.cubic.FitWithDerivatives(xs, ys, dydxs)
|
|
return nil
|
|
}
|
|
|
|
// akimaSlopes returns slopes for Akima spline method, including the approximations
|
|
// of slopes outside the data range (two on each side).
|
|
// It panics if len(xs) <= 2, elements of xs are not strictly increasing
|
|
// or len(xs) != len(ys).
|
|
func akimaSlopes(xs, ys []float64) []float64 {
|
|
n := len(xs)
|
|
if n <= 2 {
|
|
panic(tooFewPoints)
|
|
}
|
|
if len(ys) != n {
|
|
panic(differentLengths)
|
|
}
|
|
m := n + 3
|
|
slopes := make([]float64, m)
|
|
for i := 2; i < m-2; i++ {
|
|
dx := xs[i-1] - xs[i-2]
|
|
if dx <= 0 {
|
|
panic(xsNotStrictlyIncreasing)
|
|
}
|
|
slopes[i] = (ys[i-1] - ys[i-2]) / dx
|
|
}
|
|
slopes[0] = 3*slopes[2] - 2*slopes[3]
|
|
slopes[1] = 2*slopes[2] - slopes[3]
|
|
slopes[m-2] = 2*slopes[m-3] - slopes[m-4]
|
|
slopes[m-1] = 3*slopes[m-3] - 2*slopes[m-4]
|
|
return slopes
|
|
}
|
|
|
|
// findSegment returns 0 <= i < len(xs) such that xs[i] <= x < xs[i + 1], where xs[len(xs)]
|
|
// is assumed to be +Inf. If no such i is found, it returns -1. It assumes that len(xs) >= 2
|
|
// without checking.
|
|
func findSegment(xs []float64, x float64) int {
|
|
return sort.Search(len(xs), func(i int) bool { return xs[i] > x }) - 1
|
|
}
|
|
|
|
// akimaWeightedAverage returns (v1 * w1 + v2 * w2) / (w1 + w2) for w1, w2 >= 0 (not checked).
|
|
// If w1 == w2 == 0, it returns a simple average of v1 and v2.
|
|
func akimaWeightedAverage(v1, v2, w1, w2 float64) float64 {
|
|
w := w1 + w2
|
|
if w > 0 {
|
|
return (v1*w1 + v2*w2) / w
|
|
}
|
|
return 0.5*v1 + 0.5*v2
|
|
}
|
|
|
|
// akimaWeights returns the left and right weight for approximating
|
|
// the i-th derivative with neighbouring slopes.
|
|
func akimaWeights(slopes []float64, i int) (float64, float64) {
|
|
wLeft := math.Abs(slopes[i+2] - slopes[i+3])
|
|
wRight := math.Abs(slopes[i+1] - slopes[i])
|
|
return wLeft, wRight
|
|
}
|