Files
gonum/graph/network/diffusion.go
2017-11-25 06:48:06 +10:30

213 lines
5.8 KiB
Go
Raw Blame History

This file contains ambiguous Unicode characters

This file contains Unicode characters that might be confused with other characters. If you think that this is intentional, you can safely ignore this warning. Use the Escape button to reveal them.

// Copyright ©2017 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package network
import (
"math"
"gonum.org/v1/gonum/graph"
"gonum.org/v1/gonum/mat"
)
// Diffuse performs a heat diffusion across nodes of the undirected
// graph described by the given Laplacian using the initial heat distribution,
// h, according to the Laplacian with a diffusion time of t.
// The resulting heat distribution is returned, written into the map dst and
// returned,
// d = exp(-Lt)×h
// where L is the graph Laplacian. Indexing into h and dst is defined by the
// Laplacian Index field. If dst is nil, a new map is created.
//
// Nodes without corresponding entries in h are given an initial heat of zero,
// and entries in h without a corresponding node in the original graph are
// not altered when written to dst.
func Diffuse(dst, h map[int64]float64, by Laplacian, t float64) map[int64]float64 {
heat := make([]float64, len(by.Index))
for id, i := range by.Index {
heat[i] = h[id]
}
v := mat.NewVecDense(len(heat), heat)
var m, tl mat.Dense
tl.Scale(-t, by)
m.Exp(&tl)
v.MulVec(&m, v)
if dst == nil {
dst = make(map[int64]float64)
}
for i, n := range heat {
dst[by.Nodes[i].ID()] = n
}
return dst
}
// DiffuseToEquilibrium performs a heat diffusion across nodes of the
// graph described by the given Laplacian using the initial heat
// distribution, h, according to the Laplacian until the update function
// h_{n+1} = h_n - L×h_n
// results in a 2-norm update difference within tol, or iters updates have
// been made.
// The resulting heat distribution is returned as eq, written into the map dst,
// and a boolean indicating whether the equilibrium converged to within tol.
// Indexing into h and dst is defined by the Laplacian Index field. If dst
// is nil, a new map is created.
//
// Nodes without corresponding entries in h are given an initial heat of zero,
// and entries in h without a corresponding node in the original graph are
// not altered when written to dst.
func DiffuseToEquilibrium(dst, h map[int64]float64, by Laplacian, tol float64, iters int) (eq map[int64]float64, ok bool) {
heat := make([]float64, len(by.Index))
for id, i := range by.Index {
heat[i] = h[id]
}
v := mat.NewVecDense(len(heat), heat)
last := make([]float64, len(by.Index))
for id, i := range by.Index {
last[i] = h[id]
}
lastV := mat.NewVecDense(len(last), last)
var tmp mat.VecDense
for {
iters--
if iters < 0 {
break
}
lastV, v = v, lastV
tmp.MulVec(by.Matrix, lastV)
v.SubVec(lastV, &tmp)
if normDiff(heat, last) < tol {
ok = true
break
}
}
if dst == nil {
dst = make(map[int64]float64)
}
for i, n := range v.RawVector().Data {
dst[by.Nodes[i].ID()] = n
}
return dst, ok
}
// Laplacian is a graph Laplacian matrix.
type Laplacian struct {
// Matrix holds the Laplacian matrix.
mat.Matrix
// Nodes holds the input graph nodes.
Nodes []graph.Node
// Index is a mapping from the graph
// node IDs to row and column indices.
Index map[int64]int
}
// NewLaplacian returns a Laplacian matrix for the simple undirected graph g.
// The Laplacian is defined as D-A where D is a diagonal matrix holding the
// degree of each node and A is the graph adjacency matrix of the input graph.
// If g contains self edges, NewLaplacian will panic.
func NewLaplacian(g graph.Undirected) Laplacian {
nodes := g.Nodes()
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewSymDense(len(nodes), nil)
for j, u := range nodes {
to := g.From(u)
l.SetSym(j, j, float64(len(to)))
uid := u.ID()
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
if uid < vid {
l.SetSym(indexOf[vid], j, -1)
}
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}
// NewSymNormLaplacian returns a symmetric normalized Laplacian matrix for the
// simple undirected graph g.
// The normalized Laplacian is defined as I-D^(-1/2)AD^(-1/2) where D is a
// diagonal matrix holding the degree of each node and A is the graph adjacency
// matrix of the input graph.
// If g contains self edges, NewSymNormLaplacian will panic.
func NewSymNormLaplacian(g graph.Undirected) Laplacian {
nodes := g.Nodes()
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewSymDense(len(nodes), nil)
for j, u := range nodes {
to := g.From(u)
if len(to) == 0 {
continue
}
l.SetSym(j, j, 1)
uid := u.ID()
squdeg := math.Sqrt(float64(len(to)))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
if uid < vid {
l.SetSym(indexOf[vid], j, -1/(squdeg*math.Sqrt(float64(len(g.From(v))))))
}
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}
// NewRandomWalkLaplacian returns a damp-scaled random walk Laplacian matrix for
// the simple graph g.
// The random walk Laplacian is defined as I-D^(-1)A where D is a diagonal matrix
// holding the degree of each node and A is the graph adjacency matrix of the input
// graph.
// If g contains self edges, NewRandomWalkLaplacian will panic.
func NewRandomWalkLaplacian(g graph.Graph, damp float64) Laplacian {
nodes := g.Nodes()
indexOf := make(map[int64]int, len(nodes))
for i, n := range nodes {
id := n.ID()
indexOf[id] = i
}
l := mat.NewDense(len(nodes), len(nodes), nil)
for j, u := range nodes {
uid := u.ID()
to := g.From(u)
if len(to) == 0 {
continue
}
l.Set(j, j, 1-damp)
rudeg := (damp - 1) / float64(len(to))
for _, v := range to {
vid := v.ID()
if uid == vid {
panic("network: self edge in graph")
}
l.Set(indexOf[vid], j, rudeg)
}
}
return Laplacian{Matrix: l, Nodes: nodes, Index: indexOf}
}