mirror of
https://github.com/gonum/gonum.git
synced 2025-10-24 07:34:11 +08:00
189 lines
4.5 KiB
Go
189 lines
4.5 KiB
Go
// Copyright ©2014 The gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package stat
|
|
|
|
import (
|
|
"math"
|
|
"math/rand"
|
|
"testing"
|
|
|
|
"github.com/gonum/floats"
|
|
"github.com/gonum/matrix/mat64"
|
|
)
|
|
|
|
func TestCovarianceMatrix(t *testing.T) {
|
|
// An alternate way to test this is to call the Variance
|
|
// and Covariance functions and ensure that the results are identical.
|
|
for i, test := range []struct {
|
|
data *mat64.Dense
|
|
weights mat64.Vec
|
|
ans *mat64.Dense
|
|
}{
|
|
{
|
|
data: mat64.NewDense(5, 2, []float64{
|
|
-2, -4,
|
|
-1, 2,
|
|
0, 0,
|
|
1, -2,
|
|
2, 4,
|
|
}),
|
|
weights: nil,
|
|
ans: mat64.NewDense(2, 2, []float64{
|
|
2.5, 3,
|
|
3, 10,
|
|
}),
|
|
}, {
|
|
data: mat64.NewDense(3, 2, []float64{
|
|
1, 1,
|
|
2, 4,
|
|
3, 9,
|
|
}),
|
|
weights: []float64{
|
|
1,
|
|
1.5,
|
|
1,
|
|
},
|
|
ans: mat64.NewDense(2, 2, []float64{
|
|
.8, 3.2,
|
|
3.2, 13.142857142857146,
|
|
}),
|
|
},
|
|
} {
|
|
// Make a copy of the data to check that it isn't changing.
|
|
r := test.data.RawMatrix()
|
|
d := make([]float64, len(r.Data))
|
|
copy(d, r.Data)
|
|
|
|
w := make([]float64, len(test.weights))
|
|
if test.weights != nil {
|
|
copy(w, test.weights)
|
|
}
|
|
c := CovarianceMatrix(nil, test.data, test.weights)
|
|
if !c.Equals(test.ans) {
|
|
t.Errorf("%d: expected cov %v, found %v", i, test.ans, c)
|
|
}
|
|
if !floats.Equal(d, r.Data) {
|
|
t.Errorf("%d: data was modified during execution")
|
|
}
|
|
if !floats.Equal(w, test.weights) {
|
|
t.Errorf("%d: weights was modified during execution")
|
|
}
|
|
|
|
// compare with call to Covariance
|
|
_, cols := c.Dims()
|
|
for ci := 0; ci < cols; ci++ {
|
|
for cj := 0; cj < cols; cj++ {
|
|
x := test.data.Col(nil, ci)
|
|
y := test.data.Col(nil, cj)
|
|
cov := Covariance(x, y, test.weights)
|
|
if math.Abs(cov-c.At(ci, cj)) > 1e-14 {
|
|
t.Errorf("CovMat does not match at (%v, %v). Want %v, got %v.", ci, cj, cov, c.At(ci, cj))
|
|
}
|
|
}
|
|
}
|
|
|
|
}
|
|
if !Panics(func() { CovarianceMatrix(nil, mat64.NewDense(5, 2, nil), mat64.Vec([]float64{})) }) {
|
|
t.Errorf("CovarianceMatrix did not panic with weight size mismatch")
|
|
}
|
|
if !Panics(func() { CovarianceMatrix(mat64.NewDense(1, 1, nil), mat64.NewDense(5, 2, nil), nil) }) {
|
|
t.Errorf("CovarianceMatrix did not panic with preallocation size mismatch")
|
|
}
|
|
|
|
}
|
|
|
|
// benchmarks
|
|
|
|
func randMat(r, c int) mat64.Matrix {
|
|
x := make([]float64, r*c)
|
|
for i := range x {
|
|
x[i] = rand.Float64()
|
|
}
|
|
return mat64.NewDense(r, c, x)
|
|
}
|
|
|
|
func benchmarkCovarianceMatrix(b *testing.B, m mat64.Matrix) {
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
CovarianceMatrix(nil, m, nil)
|
|
}
|
|
}
|
|
func benchmarkCovarianceMatrixInPlace(b *testing.B, m mat64.Matrix) {
|
|
_, c := m.Dims()
|
|
res := mat64.NewDense(c, c, nil)
|
|
b.ResetTimer()
|
|
for i := 0; i < b.N; i++ {
|
|
CovarianceMatrix(res, m, nil)
|
|
}
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixSmallxSmall(b *testing.B) {
|
|
// 10 * 10 elements
|
|
x := randMat(small, small)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixSmallxMedium(b *testing.B) {
|
|
// 10 * 1000 elements
|
|
x := randMat(small, medium)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixMediumxSmall(b *testing.B) {
|
|
// 1000 * 10 elements
|
|
x := randMat(medium, small)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixMediumxMedium(b *testing.B) {
|
|
// 1000 * 1000 elements
|
|
x := randMat(medium, medium)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixLargexSmall(b *testing.B) {
|
|
// 1e5 * 10 elements
|
|
x := randMat(large, small)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixHugexSmall(b *testing.B) {
|
|
// 1e7 * 10 elements
|
|
x := randMat(huge, small)
|
|
benchmarkCovarianceMatrix(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixSmallxSmallInPlace(b *testing.B) {
|
|
// 10 * 10 elements
|
|
x := randMat(small, small)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixSmallxMediumInPlace(b *testing.B) {
|
|
// 10 * 1000 elements
|
|
x := randMat(small, medium)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixMediumxSmallInPlace(b *testing.B) {
|
|
// 1000 * 10 elements
|
|
x := randMat(medium, small)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
func BenchmarkCovarianceMatrixMediumxMediumInPlace(b *testing.B) {
|
|
// 1000 * 1000 elements
|
|
x := randMat(medium, medium)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixLargexSmallInPlace(b *testing.B) {
|
|
// 1e5 * 10 elements
|
|
x := randMat(large, small)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|
|
|
|
func BenchmarkCovarianceMatrixHugexSmallInPlace(b *testing.B) {
|
|
// 1e7 * 10 elements
|
|
x := randMat(huge, small)
|
|
benchmarkCovarianceMatrixInPlace(b, x)
|
|
}
|