mirror of
https://github.com/gonum/gonum.git
synced 2025-10-05 23:26:52 +08:00
78 lines
3.2 KiB
Go
78 lines
3.2 KiB
Go
// Copyright ©2021 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package r3_test
|
|
|
|
import (
|
|
"fmt"
|
|
"math"
|
|
|
|
"gonum.org/v1/gonum/num/quat"
|
|
"gonum.org/v1/gonum/spatial/r3"
|
|
)
|
|
|
|
// euler returns an r3.Rotation that corresponds to the Euler
|
|
// angles alpha, beta and gamma which are rotations around the x,
|
|
// y and z axes respectively. The order of rotations is x, y, z;
|
|
// there are many conventions for this ordering.
|
|
func euler(alpha, beta, gamma float64) r3.Rotation {
|
|
// Note that this function can be algebraically simplified
|
|
// to reduce floating point operations, but is left in this
|
|
// form for clarity.
|
|
var rot1, rot2, rot3 quat.Number
|
|
rot1.Imag, rot1.Real = math.Sincos(alpha / 2) // x-axis rotation
|
|
rot2.Jmag, rot2.Real = math.Sincos(beta / 2) // y-axis rotation
|
|
rot3.Kmag, rot3.Real = math.Sincos(gamma / 2) // z-axis rotation
|
|
|
|
return r3.Rotation(quat.Mul(rot3, quat.Mul(rot2, rot1))) // order of rotations
|
|
}
|
|
|
|
func ExampleRotation_eulerAngles() {
|
|
// It is possible to interconvert between the quaternion representation
|
|
// of a rotation and Euler angles, but this leads to problems.
|
|
//
|
|
// The first of these is that there are a variety of conventions for
|
|
// application of the rotations.
|
|
//
|
|
// The more serious consequence of using Euler angles is that it is
|
|
// possible to put the rotation system into a singularity which results
|
|
// in loss of degrees of freedom and so causes gimbal lock. This happens
|
|
// when the second axis to be rotated around is rotated to 𝝿/2.
|
|
//
|
|
// See https://en.wikipedia.org/wiki/Euler_angles for more details.
|
|
|
|
pt := r3.Vec{1, 0, 0}
|
|
|
|
// For the Euler conversion function in this example, the second rotation
|
|
// is around the y-axis.
|
|
const singularY = math.Pi / 2
|
|
|
|
arb := math.Pi / 4
|
|
|
|
fmt.Printf("rotate around x-axis: %.2f\n", euler(arb, 0, 0).Rotate(pt))
|
|
fmt.Printf("rotate around y-axis: %.2f\n", euler(0, arb, 0).Rotate(pt))
|
|
fmt.Printf("rotate around z-axis: %.2f\n", euler(0, 0, arb).Rotate(pt))
|
|
fmt.Printf("rotate around x+y-axes: %.2f\n", euler(arb, arb, 0).Rotate(pt))
|
|
fmt.Printf("rotate around x+z-axes: %.2f\n", euler(arb, 0, arb).Rotate(pt))
|
|
fmt.Printf("rotate around y+z-axes: %.2f\n", euler(0, arb, arb).Rotate(pt))
|
|
|
|
fmt.Printf("rotate around y-axis to singularity: %.2f\n", euler(0, singularY, 0).Rotate(pt))
|
|
fmt.Printf("rotate around x+y-axes with singularity → gimbal lock: %.2f\n", euler(arb, singularY, 0).Rotate(pt))
|
|
fmt.Printf("rotate around z+y-axes with singularity → gimbal lock: %.2f\n", euler(0, singularY, arb).Rotate(pt))
|
|
fmt.Printf("rotate around all-axes with singularity → gimbal lock: %.2f\n", euler(arb, singularY, arb).Rotate(pt))
|
|
|
|
// Output:
|
|
//
|
|
// rotate around x-axis: {1.00 0.00 0.00}
|
|
// rotate around y-axis: {0.71 0.00 -0.71}
|
|
// rotate around z-axis: {0.71 0.71 0.00}
|
|
// rotate around x+y-axes: {0.71 0.00 -0.71}
|
|
// rotate around x+z-axes: {0.71 0.71 0.00}
|
|
// rotate around y+z-axes: {0.50 0.50 -0.71}
|
|
// rotate around y-axis to singularity: {0.00 0.00 -1.00}
|
|
// rotate around x+y-axes with singularity → gimbal lock: {0.00 0.00 -1.00}
|
|
// rotate around z+y-axes with singularity → gimbal lock: {0.00 0.00 -1.00}
|
|
// rotate around all-axes with singularity → gimbal lock: {0.00 0.00 -1.00}
|
|
}
|