Files
gonum/stat/distmv/uniform.go
2025-02-01 22:18:04 +10:30

201 lines
5.2 KiB
Go

// Copyright ©2015 The Gonum Authors. All rights reserved.
// Use of this source code is governed by a BSD-style
// license that can be found in the LICENSE file.
package distmv
import (
"math"
"math/rand/v2"
"gonum.org/v1/gonum/spatial/r1"
)
// Uniform represents a multivariate uniform distribution.
type Uniform struct {
bounds []r1.Interval
dim int
rnd *rand.Rand
}
// NewUniform creates a new uniform distribution with the given bounds.
func NewUniform(bnds []r1.Interval, src rand.Source) *Uniform {
dim := len(bnds)
if dim == 0 {
panic(badZeroDimension)
}
for _, b := range bnds {
if b.Max < b.Min {
panic("uniform: maximum less than minimum")
}
}
u := &Uniform{
bounds: make([]r1.Interval, dim),
dim: dim,
}
if src != nil {
u.rnd = rand.New(src)
}
for i, b := range bnds {
u.bounds[i].Min = b.Min
u.bounds[i].Max = b.Max
}
return u
}
// NewUnitUniform creates a new Uniform distribution over the dim-dimensional
// unit hypercube. That is, a uniform distribution where each dimension has
// Min = 0 and Max = 1.
func NewUnitUniform(dim int, src rand.Source) *Uniform {
if dim <= 0 {
panic(nonPosDimension)
}
bounds := make([]r1.Interval, dim)
for i := range bounds {
bounds[i].Min = 0
bounds[i].Max = 1
}
u := Uniform{
bounds: bounds,
dim: dim,
}
if src != nil {
u.rnd = rand.New(src)
}
return &u
}
// Bounds returns the bounds on the variables of the distribution.
//
// If dst is not nil, the bounds will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (u *Uniform) Bounds(bounds []r1.Interval) []r1.Interval {
if bounds == nil {
bounds = make([]r1.Interval, u.Dim())
}
if len(bounds) != u.Dim() {
panic(badInputLength)
}
copy(bounds, u.bounds)
return bounds
}
// CDF returns the value of the multidimensional cumulative distribution
// function of the probability distribution at the point x.
//
// If dst is not nil, the value will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution. CDF will also panic
// if the length of x is not equal to the dimension of the distribution.
func (u *Uniform) CDF(dst, x []float64) []float64 {
if len(x) != u.dim {
panic(badSizeMismatch)
}
dst = reuseAs(dst, u.dim)
for i, v := range x {
if v < u.bounds[i].Min {
dst[i] = 0
} else if v > u.bounds[i].Max {
dst[i] = 1
} else {
dst[i] = (v - u.bounds[i].Min) / (u.bounds[i].Max - u.bounds[i].Min)
}
}
return dst
}
// Dim returns the dimension of the distribution.
func (u *Uniform) Dim() int {
return u.dim
}
// Entropy returns the differential entropy of the distribution.
func (u *Uniform) Entropy() float64 {
// Entropy is log of the volume.
var logVol float64
for _, b := range u.bounds {
logVol += math.Log(b.Max - b.Min)
}
return logVol
}
// LogProb computes the log of the pdf of the point x.
func (u *Uniform) LogProb(x []float64) float64 {
dim := u.dim
if len(x) != dim {
panic(badSizeMismatch)
}
var logprob float64
for i, b := range u.bounds {
if x[i] < b.Min || x[i] > b.Max {
return math.Inf(-1)
}
logprob -= math.Log(b.Max - b.Min)
}
return logprob
}
// Mean returns the mean of the probability distribution.
//
// If dst is not nil, the mean will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (u *Uniform) Mean(dst []float64) []float64 {
dst = reuseAs(dst, u.dim)
for i, b := range u.bounds {
dst[i] = (b.Max + b.Min) / 2
}
return dst
}
// Prob computes the value of the probability density function at x.
func (u *Uniform) Prob(x []float64) float64 {
return math.Exp(u.LogProb(x))
}
// Rand generates a random sample according to the distribution.
//
// If dst is not nil, the sample will be stored in-place into dst and returned,
// otherwise a new slice will be allocated first. If dst is not nil, it must
// have length equal to the dimension of the distribution.
func (u *Uniform) Rand(dst []float64) []float64 {
dst = reuseAs(dst, u.dim)
if u.rnd == nil {
for i, b := range u.bounds {
dst[i] = rand.Float64()*(b.Max-b.Min) + b.Min
}
return dst
}
for i, b := range u.bounds {
dst[i] = u.rnd.Float64()*(b.Max-b.Min) + b.Min
}
return dst
}
// Quantile returns the value of the multi-dimensional inverse cumulative
// distribution function at p.
//
// If dst is not nil, the quantile will be stored in-place into dst and
// returned, otherwise a new slice will be allocated first. If dst is not nil,
// it must have length equal to the dimension of the distribution. Quantile will
// also panic if the length of p is not equal to the dimension of the
// distribution.
//
// All of the values of p must be between 0 and 1, inclusive, or Quantile will
// panic.
func (u *Uniform) Quantile(dst, p []float64) []float64 {
if len(p) != u.dim {
panic(badSizeMismatch)
}
dst = reuseAs(dst, u.dim)
for i, v := range p {
if v < 0 || v > 1 {
panic(badQuantile)
}
dst[i] = v*(u.bounds[i].Max-u.bounds[i].Min) + u.bounds[i].Min
}
return dst
}