mirror of
https://github.com/gonum/gonum.git
synced 2025-12-24 13:47:56 +08:00
201 lines
5.2 KiB
Go
201 lines
5.2 KiB
Go
// Copyright ©2015 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package distmv
|
|
|
|
import (
|
|
"math"
|
|
"math/rand/v2"
|
|
|
|
"gonum.org/v1/gonum/spatial/r1"
|
|
)
|
|
|
|
// Uniform represents a multivariate uniform distribution.
|
|
type Uniform struct {
|
|
bounds []r1.Interval
|
|
dim int
|
|
rnd *rand.Rand
|
|
}
|
|
|
|
// NewUniform creates a new uniform distribution with the given bounds.
|
|
func NewUniform(bnds []r1.Interval, src rand.Source) *Uniform {
|
|
dim := len(bnds)
|
|
if dim == 0 {
|
|
panic(badZeroDimension)
|
|
}
|
|
for _, b := range bnds {
|
|
if b.Max < b.Min {
|
|
panic("uniform: maximum less than minimum")
|
|
}
|
|
}
|
|
u := &Uniform{
|
|
bounds: make([]r1.Interval, dim),
|
|
dim: dim,
|
|
}
|
|
if src != nil {
|
|
u.rnd = rand.New(src)
|
|
}
|
|
for i, b := range bnds {
|
|
u.bounds[i].Min = b.Min
|
|
u.bounds[i].Max = b.Max
|
|
}
|
|
return u
|
|
}
|
|
|
|
// NewUnitUniform creates a new Uniform distribution over the dim-dimensional
|
|
// unit hypercube. That is, a uniform distribution where each dimension has
|
|
// Min = 0 and Max = 1.
|
|
func NewUnitUniform(dim int, src rand.Source) *Uniform {
|
|
if dim <= 0 {
|
|
panic(nonPosDimension)
|
|
}
|
|
bounds := make([]r1.Interval, dim)
|
|
for i := range bounds {
|
|
bounds[i].Min = 0
|
|
bounds[i].Max = 1
|
|
}
|
|
u := Uniform{
|
|
bounds: bounds,
|
|
dim: dim,
|
|
}
|
|
if src != nil {
|
|
u.rnd = rand.New(src)
|
|
}
|
|
return &u
|
|
}
|
|
|
|
// Bounds returns the bounds on the variables of the distribution.
|
|
//
|
|
// If dst is not nil, the bounds will be stored in-place into dst and returned,
|
|
// otherwise a new slice will be allocated first. If dst is not nil, it must
|
|
// have length equal to the dimension of the distribution.
|
|
func (u *Uniform) Bounds(bounds []r1.Interval) []r1.Interval {
|
|
if bounds == nil {
|
|
bounds = make([]r1.Interval, u.Dim())
|
|
}
|
|
if len(bounds) != u.Dim() {
|
|
panic(badInputLength)
|
|
}
|
|
copy(bounds, u.bounds)
|
|
return bounds
|
|
}
|
|
|
|
// CDF returns the value of the multidimensional cumulative distribution
|
|
// function of the probability distribution at the point x.
|
|
//
|
|
// If dst is not nil, the value will be stored in-place into dst and returned,
|
|
// otherwise a new slice will be allocated first. If dst is not nil, it must
|
|
// have length equal to the dimension of the distribution. CDF will also panic
|
|
// if the length of x is not equal to the dimension of the distribution.
|
|
func (u *Uniform) CDF(dst, x []float64) []float64 {
|
|
if len(x) != u.dim {
|
|
panic(badSizeMismatch)
|
|
}
|
|
dst = reuseAs(dst, u.dim)
|
|
|
|
for i, v := range x {
|
|
if v < u.bounds[i].Min {
|
|
dst[i] = 0
|
|
} else if v > u.bounds[i].Max {
|
|
dst[i] = 1
|
|
} else {
|
|
dst[i] = (v - u.bounds[i].Min) / (u.bounds[i].Max - u.bounds[i].Min)
|
|
}
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// Dim returns the dimension of the distribution.
|
|
func (u *Uniform) Dim() int {
|
|
return u.dim
|
|
}
|
|
|
|
// Entropy returns the differential entropy of the distribution.
|
|
func (u *Uniform) Entropy() float64 {
|
|
// Entropy is log of the volume.
|
|
var logVol float64
|
|
for _, b := range u.bounds {
|
|
logVol += math.Log(b.Max - b.Min)
|
|
}
|
|
return logVol
|
|
}
|
|
|
|
// LogProb computes the log of the pdf of the point x.
|
|
func (u *Uniform) LogProb(x []float64) float64 {
|
|
dim := u.dim
|
|
if len(x) != dim {
|
|
panic(badSizeMismatch)
|
|
}
|
|
var logprob float64
|
|
for i, b := range u.bounds {
|
|
if x[i] < b.Min || x[i] > b.Max {
|
|
return math.Inf(-1)
|
|
}
|
|
logprob -= math.Log(b.Max - b.Min)
|
|
}
|
|
return logprob
|
|
}
|
|
|
|
// Mean returns the mean of the probability distribution.
|
|
//
|
|
// If dst is not nil, the mean will be stored in-place into dst and returned,
|
|
// otherwise a new slice will be allocated first. If dst is not nil, it must
|
|
// have length equal to the dimension of the distribution.
|
|
func (u *Uniform) Mean(dst []float64) []float64 {
|
|
dst = reuseAs(dst, u.dim)
|
|
for i, b := range u.bounds {
|
|
dst[i] = (b.Max + b.Min) / 2
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// Prob computes the value of the probability density function at x.
|
|
func (u *Uniform) Prob(x []float64) float64 {
|
|
return math.Exp(u.LogProb(x))
|
|
}
|
|
|
|
// Rand generates a random sample according to the distribution.
|
|
//
|
|
// If dst is not nil, the sample will be stored in-place into dst and returned,
|
|
// otherwise a new slice will be allocated first. If dst is not nil, it must
|
|
// have length equal to the dimension of the distribution.
|
|
func (u *Uniform) Rand(dst []float64) []float64 {
|
|
dst = reuseAs(dst, u.dim)
|
|
if u.rnd == nil {
|
|
for i, b := range u.bounds {
|
|
dst[i] = rand.Float64()*(b.Max-b.Min) + b.Min
|
|
}
|
|
return dst
|
|
}
|
|
for i, b := range u.bounds {
|
|
dst[i] = u.rnd.Float64()*(b.Max-b.Min) + b.Min
|
|
}
|
|
return dst
|
|
}
|
|
|
|
// Quantile returns the value of the multi-dimensional inverse cumulative
|
|
// distribution function at p.
|
|
//
|
|
// If dst is not nil, the quantile will be stored in-place into dst and
|
|
// returned, otherwise a new slice will be allocated first. If dst is not nil,
|
|
// it must have length equal to the dimension of the distribution. Quantile will
|
|
// also panic if the length of p is not equal to the dimension of the
|
|
// distribution.
|
|
//
|
|
// All of the values of p must be between 0 and 1, inclusive, or Quantile will
|
|
// panic.
|
|
func (u *Uniform) Quantile(dst, p []float64) []float64 {
|
|
if len(p) != u.dim {
|
|
panic(badSizeMismatch)
|
|
}
|
|
dst = reuseAs(dst, u.dim)
|
|
for i, v := range p {
|
|
if v < 0 || v > 1 {
|
|
panic(badQuantile)
|
|
}
|
|
dst[i] = v*(u.bounds[i].Max-u.bounds[i].Min) + u.bounds[i].Min
|
|
}
|
|
return dst
|
|
}
|