mirror of
https://github.com/gonum/gonum.git
synced 2025-09-27 03:26:04 +08:00
124 lines
2.8 KiB
Go
124 lines
2.8 KiB
Go
// Copyright ©2018 The Gonum Authors. All rights reserved.
|
|
// Use of this source code is governed by a BSD-style
|
|
// license that can be found in the LICENSE file.
|
|
|
|
package optimize
|
|
|
|
import (
|
|
"math"
|
|
|
|
"gonum.org/v1/gonum/mat"
|
|
)
|
|
|
|
var _ Method = (*ListSearch)(nil)
|
|
|
|
// ListSearch finds the optimum location from a specified list of possible
|
|
// optimum locations.
|
|
type ListSearch struct {
|
|
// Locs is the list of locations to optimize. Each row of Locs is a location
|
|
// to optimize. The number of columns of Locs must match the dimensions
|
|
// passed to InitGlobal, and Locs must have at least one row.
|
|
Locs mat.Matrix
|
|
|
|
eval int
|
|
rows int
|
|
bestF float64
|
|
bestIdx int
|
|
}
|
|
|
|
func (*ListSearch) Uses(has Available) (uses Available, err error) {
|
|
return has.function()
|
|
}
|
|
|
|
// Init initializes the method for optimization. The input dimension
|
|
// must match the number of columns of Locs.
|
|
func (l *ListSearch) Init(dim, tasks int) int {
|
|
if dim <= 0 {
|
|
panic(nonpositiveDimension)
|
|
}
|
|
if tasks < 0 {
|
|
panic(negativeTasks)
|
|
}
|
|
r, c := l.Locs.Dims()
|
|
if r == 0 {
|
|
panic("listsearch: list matrix has no rows")
|
|
}
|
|
if c != dim {
|
|
panic("listsearch: supplied dimension does not match list columns")
|
|
}
|
|
l.eval = 0
|
|
l.rows = r
|
|
l.bestF = math.Inf(1)
|
|
l.bestIdx = -1
|
|
return min(r, tasks)
|
|
}
|
|
|
|
func (l *ListSearch) sendNewLoc(operation chan<- Task, task Task) {
|
|
task.Op = FuncEvaluation
|
|
task.ID = l.eval
|
|
mat.Row(task.X, l.eval, l.Locs)
|
|
l.eval++
|
|
operation <- task
|
|
}
|
|
|
|
func (l *ListSearch) updateMajor(operation chan<- Task, task Task) {
|
|
// Update the best value seen so far, and send a MajorIteration.
|
|
if task.F < l.bestF {
|
|
l.bestF = task.F
|
|
l.bestIdx = task.ID
|
|
} else {
|
|
task.F = l.bestF
|
|
mat.Row(task.X, l.bestIdx, l.Locs)
|
|
}
|
|
task.Op = MajorIteration
|
|
operation <- task
|
|
}
|
|
|
|
func (l *ListSearch) Status() (Status, error) {
|
|
if l.eval < l.rows {
|
|
return NotTerminated, nil
|
|
}
|
|
return MethodConverge, nil
|
|
}
|
|
|
|
func (l *ListSearch) Run(operation chan<- Task, result <-chan Task, tasks []Task) {
|
|
// Send initial tasks to evaluate
|
|
for _, task := range tasks {
|
|
l.sendNewLoc(operation, task)
|
|
}
|
|
// Read from the channel until PostIteration is sent or until the list of
|
|
// tasks is exhausted.
|
|
Loop:
|
|
for {
|
|
task := <-result
|
|
switch task.Op {
|
|
default:
|
|
panic("unknown operation")
|
|
case PostIteration:
|
|
break Loop
|
|
case MajorIteration:
|
|
if l.eval == l.rows {
|
|
task.Op = MethodDone
|
|
operation <- task
|
|
continue
|
|
}
|
|
l.sendNewLoc(operation, task)
|
|
case FuncEvaluation:
|
|
l.updateMajor(operation, task)
|
|
}
|
|
}
|
|
|
|
// Post iteration was sent, or the list has been completed. Read in the final
|
|
// list of tasks.
|
|
for task := range result {
|
|
switch task.Op {
|
|
default:
|
|
panic("unknown operation")
|
|
case MajorIteration:
|
|
case FuncEvaluation:
|
|
l.updateMajor(operation, task)
|
|
}
|
|
}
|
|
close(operation)
|
|
}
|