// Copyright ©2014 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package stat import ( "math" "github.com/gonum/floats" "github.com/gonum/matrix" "github.com/gonum/matrix/mat64" ) // CovarianceMatrix calculates a covariance matrix (also known as a // variance-covariance matrix) from a matrix of data, using a two-pass // algorithm. // // The weights must have length equal to the number of rows in // input data matrix x. If cov is nil, then a new matrix with appropriate size will // be constructed. If cov is not nil, it should have the same number of columns as the // input data matrix x, and it will be used as the destination for the covariance // data. Weights must not be negative. func CovarianceMatrix(cov *mat64.SymDense, x mat64.Matrix, weights []float64) *mat64.SymDense { // This is the matrix version of the two-pass algorithm. It doesn't use the // additional floating point error correction that the Covariance function uses // to reduce the impact of rounding during centering. r, c := x.Dims() if cov == nil { cov = mat64.NewSymDense(c, nil) } else if n := cov.Symmetric(); n != c { panic(matrix.ErrShape) } var xt mat64.Dense xt.Clone(x.T()) // Subtract the mean of each of the columns. for i := 0; i < c; i++ { v := xt.RawRowView(i) // This will panic with ErrShape if len(weights) != len(v), so // we don't have to check the size later. mean := Mean(v, weights) floats.AddConst(-mean, v) } if weights == nil { // Calculate the normalization factor // scaled by the sample size. cov.SymOuterK(1/(float64(r)-1), &xt) return cov } // Multiply by the sqrt of the weights, so that multiplication is symmetric. sqrtwts := make([]float64, r) for i, w := range weights { if w < 0 { panic("stat: negative covariance matrix weights") } sqrtwts[i] = math.Sqrt(w) } // Weight the rows. for i := 0; i < c; i++ { v := xt.RawRowView(i) floats.Mul(v, sqrtwts) } // Calculate the normalization factor // scaled by the weighted sample size. cov.SymOuterK(1/(floats.Sum(weights)-1), &xt) return cov } // CorrelationMatrix calculates a correlation matrix from a matrix of data // using a two-pass algorithm. // // The weights must have length equal to the number of rows in // input data matrix x. If corr is nil, then a new matrix with appropriate size will // be constructed. If corr is not nil, it should have the same number of columns // as the input data matrix x, and it will be used as the destination for the // correlation data. Weights must not be negative. func CorrelationMatrix(corr *mat64.SymDense, x mat64.Matrix, weights []float64) *mat64.SymDense { // This will panic if the sizes don't match, or if weights is the wrong size. corr = CovarianceMatrix(corr, x, weights) covToCorr(corr) return corr } // covToCorr converts a covariance matrix to a correlation matrix. func covToCorr(c *mat64.SymDense) { r := c.Symmetric() s := make([]float64, r) for i := 0; i < r; i++ { s[i] = 1 / math.Sqrt(c.At(i, i)) } for i, sx := range s { // Ensure that the diagonal has exactly ones. c.SetSym(i, i, 1) for j := i + 1; j < r; j++ { v := c.At(i, j) c.SetSym(i, j, v*sx*s[j]) } } } // corrToCov converts a correlation matrix to a covariance matrix. // The input sigma should be vector of standard deviations corresponding // to the covariance. It will panic if len(sigma) is not equal to the // number of rows in the correlation matrix. func corrToCov(c *mat64.SymDense, sigma []float64) { r, _ := c.Dims() if r != len(sigma) { panic(matrix.ErrShape) } for i, sx := range sigma { // Ensure that the diagonal has exactly sigma squared. c.SetSym(i, i, sx*sx) for j := i + 1; j < r; j++ { v := c.At(i, j) c.SetSym(i, j, v*sx*sigma[j]) } } }