// Copyright ©2018 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package hyperdual import ( "fmt" "math" "testing" "gonum.org/v1/gonum/floats" ) var formatTests = []struct { h Number format string want string }{ {h: Number{1.1, 2.1, 3.1, 4.1}, format: "%#v", want: "hyperdual.Number{Real:1.1, E1mag:2.1, E2mag:3.1, E1E2mag:4.1}"}, // Bootstrap test. {h: Number{-1.1, -2.1, -3.1, -4.1}, format: "%#v", want: "hyperdual.Number{Real:-1.1, E1mag:-2.1, E2mag:-3.1, E1E2mag:-4.1}"}, // Bootstrap test. {h: Number{1.1, 2.1, 3.1, 4.1}, format: "%+v", want: "{Real:1.1, E1mag:2.1, E2mag:3.1, E1E2mag:4.1}"}, {h: Number{-1.1, -2.1, -3.1, -4.1}, format: "%+v", want: "{Real:-1.1, E1mag:-2.1, E2mag:-3.1, E1E2mag:-4.1}"}, {h: Number{1, 2, 3, 4}, format: "%v", want: "(1+2ϵ₁+3ϵ₂+4ϵ₁ϵ₂)"}, {h: Number{-1, -2, -3, -4}, format: "%v", want: "(-1-2ϵ₁-3ϵ₂-4ϵ₁ϵ₂)"}, {h: Number{1, 2, 3, 4}, format: "%g", want: "(1+2ϵ₁+3ϵ₂+4ϵ₁ϵ₂)"}, {h: Number{-1, -2, -3, -4}, format: "%g", want: "(-1-2ϵ₁-3ϵ₂-4ϵ₁ϵ₂)"}, {h: Number{1, 2, 3, 4}, format: "%e", want: "(1.000000e+00+2.000000e+00ϵ₁+3.000000e+00ϵ₂+4.000000e+00ϵ₁ϵ₂)"}, {h: Number{-1, -2, -3, -4}, format: "%e", want: "(-1.000000e+00-2.000000e+00ϵ₁-3.000000e+00ϵ₂-4.000000e+00ϵ₁ϵ₂)"}, {h: Number{1, 2, 3, 4}, format: "%E", want: "(1.000000E+00+2.000000E+00ϵ₁+3.000000E+00ϵ₂+4.000000E+00ϵ₁ϵ₂)"}, {h: Number{-1, -2, -3, -4}, format: "%E", want: "(-1.000000E+00-2.000000E+00ϵ₁-3.000000E+00ϵ₂-4.000000E+00ϵ₁ϵ₂)"}, {h: Number{1, 2, 3, 4}, format: "%f", want: "(1.000000+2.000000ϵ₁+3.000000ϵ₂+4.000000ϵ₁ϵ₂)"}, {h: Number{-1, -2, -3, -4}, format: "%f", want: "(-1.000000-2.000000ϵ₁-3.000000ϵ₂-4.000000ϵ₁ϵ₂)"}, } func TestFormat(t *testing.T) { for _, test := range formatTests { got := fmt.Sprintf(test.format, test.h) if got != test.want { t.Errorf("unexpected result for fmt.Sprintf(%q, %#v): got:%q, want:%q", test.format, test.h, got, test.want) } } } // First derivatives: func dSin(x float64) float64 { return math.Cos(x) } func dCos(x float64) float64 { return -math.Sin(x) } func dTan(x float64) float64 { return sec(x) * sec(x) } func dAsin(x float64) float64 { return 1 / math.Sqrt(1-x*x) } func dAcos(x float64) float64 { return -1 / math.Sqrt(1-x*x) } func dAtan(x float64) float64 { return 1 / (1 + x*x) } func dSinh(x float64) float64 { return math.Cosh(x) } func dCosh(x float64) float64 { return math.Sinh(x) } func dTanh(x float64) float64 { return sech(x) * sech(x) } func dAsinh(x float64) float64 { return 1 / math.Sqrt(x*x+1) } func dAcosh(x float64) float64 { return 1 / (math.Sqrt(x-1) * math.Sqrt(x+1)) } func dAtanh(x float64) float64 { switch { case math.Abs(x) == 1: return math.NaN() case math.IsInf(x, 0): return negZero } return 1 / (1 - x*x) } func dExp(x float64) float64 { return math.Exp(x) } func dLog(x float64) float64 { if x < 0 { return math.NaN() } return 1 / x } func dPow(x, y float64) float64 { return y * math.Pow(x, y-1) } func dSqrt(x float64) float64 { // For whatever reason, math.Sqrt(-0) returns -0. // In this case, that is clearly a wrong approach. if x == 0 { return math.Inf(1) } return 0.5 / math.Sqrt(x) } func dInv(x float64) float64 { return -1 / (x * x) } // Second derivatives: func d2Sin(x float64) float64 { return -math.Sin(x) } func d2Cos(x float64) float64 { return -math.Cos(x) } func d2Tan(x float64) float64 { return 2 * math.Tan(x) * sec(x) * sec(x) } func d2Asin(x float64) float64 { return x / math.Pow(1-x*x, 1.5) } func d2Acos(x float64) float64 { return -x / math.Pow(1-x*x, 1.5) } func d2Atan(x float64) float64 { return -2 * x / ((x*x + 1) * (x*x + 1)) } func d2Sinh(x float64) float64 { return math.Sinh(x) } func d2Cosh(x float64) float64 { return math.Cosh(x) } func d2Tanh(x float64) float64 { return -2 * math.Tanh(x) * sech(x) * sech(x) } func d2Asinh(x float64) float64 { return -x / math.Pow((x*x+1), 1.5) } func d2Acosh(x float64) float64 { return -x / (math.Pow(x-1, 1.5) * math.Pow(x+1, 1.5)) } func d2Atanh(x float64) float64 { return 2 * x / ((1 - x*x) * (1 - x*x)) } func d2Exp(x float64) float64 { return math.Exp(x) } func d2Log(x float64) float64 { if x < 0 { return math.NaN() } return -1 / (x * x) } func d2Pow(x, y float64) float64 { return y * (y - 1) * math.Pow(x, y-2) } func d2Sqrt(x float64) float64 { // Again math.Sqyu, and math.Pow are odd. switch x { case math.Inf(1): return 0 case math.Inf(-1): return math.NaN() } return -0.25 * math.Pow(x, -1.5) } func d2Inv(x float64) float64 { return 2 / (x * x * x) } // Helpers: func sec(x float64) float64 { return 1 / math.Cos(x) } func sech(x float64) float64 { return 1 / math.Cosh(x) } var hyperdualTests = []struct { name string x []float64 fnHyperdual func(x Number) Number fn func(x float64) float64 dFn func(x float64) float64 d2Fn func(x float64) float64 }{ { name: "sin", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Sin, fn: math.Sin, dFn: dSin, d2Fn: d2Sin, }, { name: "cos", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Cos, fn: math.Cos, dFn: dCos, d2Fn: d2Cos, }, { name: "tan", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Tan, fn: math.Tan, dFn: dTan, d2Fn: d2Tan, }, { name: "sinh", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Sinh, fn: math.Sinh, dFn: dSinh, d2Fn: d2Sinh, }, { name: "cosh", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Cosh, fn: math.Cosh, dFn: dCosh, d2Fn: d2Cosh, }, { name: "tanh", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Tanh, fn: math.Tanh, dFn: dTanh, d2Fn: d2Tanh, }, { name: "asin", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Asin, fn: math.Asin, dFn: dAsin, d2Fn: d2Asin, }, { name: "acos", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Acos, fn: math.Acos, dFn: dAcos, d2Fn: d2Acos, }, { name: "atan", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Atan, fn: math.Atan, dFn: dAtan, d2Fn: d2Atan, }, { name: "asinh", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Asinh, fn: math.Asinh, dFn: dAsinh, d2Fn: d2Asinh, }, { name: "acosh", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Acosh, fn: math.Acosh, dFn: dAcosh, d2Fn: d2Acosh, }, { name: "atanh", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Atanh, fn: math.Atanh, dFn: dAtanh, d2Fn: d2Atanh, }, { name: "exp", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Exp, fn: math.Exp, dFn: dExp, d2Fn: d2Exp, }, { name: "log", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Log, fn: math.Log, dFn: dLog, d2Fn: d2Log, }, { name: "inv", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Inv, fn: func(x float64) float64 { return 1 / x }, dFn: dInv, d2Fn: d2Inv, }, { name: "sqrt", x: []float64{math.NaN(), math.Inf(-1), -3, -2, -1, -0.5, negZero, 0, 0.5, 1, 2, 3, math.Inf(1)}, fnHyperdual: Sqrt, fn: math.Sqrt, dFn: dSqrt, d2Fn: d2Sqrt, }, { name: "Fike example fn", x: []float64{1, 2, 3, 4, 5}, fnHyperdual: func(x Number) Number { return Mul( Exp(x), Inv(Sqrt( Add( PowReal(Sin(x), 3), PowReal(Cos(x), 3))))) }, fn: func(x float64) float64 { return math.Exp(x) / math.Sqrt(math.Pow(math.Sin(x), 3)+math.Pow(math.Cos(x), 3)) }, dFn: func(x float64) float64 { return math.Exp(x) * (3*math.Cos(x) + 5*math.Cos(3*x) + 9*math.Sin(x) + math.Sin(3*x)) / (8 * math.Pow(math.Pow(math.Sin(x), 3)+math.Pow(math.Cos(x), 3), 1.5)) }, d2Fn: func(x float64) float64 { return math.Exp(x) * (130 - 12*math.Cos(2*x) + 30*math.Cos(4*x) + 12*math.Cos(6*x) - 111*math.Sin(2*x) + 48*math.Sin(4*x) + 5*math.Sin(6*x)) / (64 * math.Pow(math.Pow(math.Sin(x), 3)+math.Pow(math.Cos(x), 3), 2.5)) }, }, } func TestHyperdual(t *testing.T) { const tol = 1e-14 for _, test := range hyperdualTests { for _, x := range test.x { fxHyperdual := test.fnHyperdual(Number{Real: x, E1mag: 1, E2mag: 1}) fx := test.fn(x) dFx := test.dFn(x) d2Fx := test.d2Fn(x) if !same(fxHyperdual.Real, fx, tol) { t.Errorf("unexpected %s(%v): got:%v want:%v", test.name, x, fxHyperdual.Real, fx) } if !same(fxHyperdual.E1mag, dFx, tol) { t.Errorf("unexpected %s'(%v) (ϵ₁): got:%v want:%v", test.name, x, fxHyperdual.E1mag, dFx) } if !same(fxHyperdual.E1mag, fxHyperdual.E2mag, tol) { t.Errorf("mismatched ϵ₁ and ϵ₂ for %s(%v): ϵ₁:%v ϵ₂:%v", test.name, x, fxHyperdual.E1mag, fxHyperdual.E2mag) } if !same(fxHyperdual.E1E2mag, d2Fx, tol) { t.Errorf("unexpected %s''(%v): got:%v want:%v", test.name, x, fxHyperdual.E1E2mag, d2Fx) } } } } var powRealTests = []struct { d Number p float64 want Number }{ // PowReal(NaN+xϵ₁+yϵ₂, ±0) = 1+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for any x and y {d: Number{Real: math.NaN(), E1mag: 0, E2mag: 0}, p: 0, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 0, E2mag: 0}, p: negZero, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 1}, p: 0, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 2, E2mag: 2}, p: negZero, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 3, E2mag: 3}, p: 0, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 1}, p: negZero, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 2, E2mag: 2}, p: 0, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 3, E2mag: 3}, p: negZero, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 2, E2mag: 3}, p: 0, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 2, E2mag: 3}, p: negZero, want: Number{Real: 1, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, // PowReal(x, ±0) = 1 for any x {d: Number{Real: 0, E1mag: 0, E2mag: 0}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0}}, {d: Number{Real: math.Inf(1), E1mag: 0, E2mag: 0}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0}}, {d: Number{Real: math.Inf(-1), E1mag: 0, E2mag: 0}, p: negZero, want: Number{Real: 1, E1mag: 0, E2mag: 0}}, {d: Number{Real: 0, E1mag: 1, E2mag: 1}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0}}, {d: Number{Real: math.Inf(1), E1mag: 1, E2mag: 1}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0}}, {d: Number{Real: math.Inf(-1), E1mag: 1, E2mag: 1}, p: negZero, want: Number{Real: 1, E1mag: 0, E2mag: 0}}, // These two satisfy the claim above, but the sign of zero is negative. Do we care? {d: Number{Real: negZero, E1mag: 0, E2mag: 0}, p: negZero, want: Number{Real: 1, E1mag: negZero, E2mag: negZero}}, {d: Number{Real: negZero, E1mag: 1, E2mag: 1}, p: negZero, want: Number{Real: 1, E1mag: negZero, E2mag: negZero}}, // PowReal(1+xϵ₁+yϵ₂, z) = 1+xzϵ₁+yzϵ₂+2xyzϵ₁ϵ₂ for any z {d: Number{Real: 1, E1mag: 0, E2mag: 0}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 0, E2mag: 0}, p: 1, want: Number{Real: 1, E1mag: 0, E2mag: 0, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 0, E2mag: 0}, p: 2, want: Number{Real: 1, E1mag: 0, E2mag: 0, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 0, E2mag: 0}, p: 3, want: Number{Real: 1, E1mag: 0, E2mag: 0, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 1, E2mag: 1}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 1, E2mag: 1}, p: 1, want: Number{Real: 1, E1mag: 1, E2mag: 1, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 1, E2mag: 1}, p: 2, want: Number{Real: 1, E1mag: 2, E2mag: 2, E1E2mag: 2}}, {d: Number{Real: 1, E1mag: 1, E2mag: 1}, p: 3, want: Number{Real: 1, E1mag: 3, E2mag: 3, E1E2mag: 6}}, {d: Number{Real: 1, E1mag: 2, E2mag: 2}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 2, E2mag: 2}, p: 1, want: Number{Real: 1, E1mag: 2, E2mag: 2, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 2, E2mag: 2}, p: 2, want: Number{Real: 1, E1mag: 4, E2mag: 4, E1E2mag: 8}}, {d: Number{Real: 1, E1mag: 2, E2mag: 2}, p: 3, want: Number{Real: 1, E1mag: 6, E2mag: 6, E1E2mag: 24}}, {d: Number{Real: 1, E1mag: 1, E2mag: 2}, p: 0, want: Number{Real: 1, E1mag: 0, E2mag: 0, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 1, E2mag: 2}, p: 1, want: Number{Real: 1, E1mag: 1, E2mag: 2, E1E2mag: 0}}, {d: Number{Real: 1, E1mag: 1, E2mag: 2}, p: 2, want: Number{Real: 1, E1mag: 2, E2mag: 4, E1E2mag: 4}}, {d: Number{Real: 1, E1mag: 1, E2mag: 2}, p: 3, want: Number{Real: 1, E1mag: 3, E2mag: 6, E1E2mag: 12}}, // PowReal(NaN+xϵ₁+yϵ₂, 1) = NaN+xϵ₁+yϵ₂+NaNϵ₁ϵ₂ for any x {d: Number{Real: math.NaN(), E1mag: 0, E2mag: 0}, p: 1, want: Number{Real: math.NaN(), E1mag: 0, E2mag: 0, E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 1}, p: 1, want: Number{Real: math.NaN(), E1mag: 1, E2mag: 1, E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 2, E2mag: 2}, p: 1, want: Number{Real: math.NaN(), E1mag: 2, E2mag: 2, E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 2}, p: 1, want: Number{Real: math.NaN(), E1mag: 1, E2mag: 2, E1E2mag: math.NaN()}}, // PowReal(x, 1) = x for any x {d: Number{Real: 0, E1mag: 0, E2mag: 0}, p: 1, want: Number{Real: 0, E1mag: 0, E2mag: 0}}, {d: Number{Real: negZero, E1mag: 0, E2mag: 0}, p: 1, want: Number{Real: negZero, E1mag: 0, E2mag: 0}}, {d: Number{Real: 0, E1mag: 1, E2mag: 1}, p: 1, want: Number{Real: 0, E1mag: 1, E2mag: 1}}, {d: Number{Real: negZero, E1mag: 1, E2mag: 1}, p: 1, want: Number{Real: negZero, E1mag: 1, E2mag: 1}}, {d: Number{Real: 0, E1mag: 1, E2mag: 2}, p: 1, want: Number{Real: 0, E1mag: 1, E2mag: 2}}, {d: Number{Real: negZero, E1mag: 1, E2mag: 2}, p: 1, want: Number{Real: negZero, E1mag: 1, E2mag: 2}}, // PowReal(NaN+xϵ₁+xϵ₂, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ {d: Number{Real: math.NaN(), E1mag: 0, E2mag: 0}, p: 2, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 0, E2mag: 0}, p: 3, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 1}, p: 2, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 1}, p: 3, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 2, E2mag: 2}, p: 2, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 2, E2mag: 2}, p: 3, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 2}, p: 2, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: math.NaN(), E1mag: 1, E2mag: 2}, p: 3, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, // PowReal(x, NaN) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ {d: Number{Real: 0, E1mag: 0, E2mag: 0}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 2, E1mag: 0, E2mag: 0}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 0, E2mag: 0}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 0, E1mag: 1, E2mag: 1}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 2, E1mag: 1, E2mag: 1}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 1, E2mag: 1}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 0, E1mag: 2, E2mag: 2}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 2, E1mag: 2, E2mag: 2}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 2, E2mag: 2}, p: math.NaN(), want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, // Handled by math.Pow tests: // // Pow(±0, y) = ±Inf for y an odd integer < 0 // Pow(±0, -Inf) = +Inf // Pow(±0, +Inf) = +0 // Pow(±0, y) = +Inf for finite y < 0 and not an odd integer // Pow(±0, y) = ±0 for y an odd integer > 0 // Pow(±0, y) = +0 for finite y > 0 and not an odd integer // Pow(-1, ±Inf) = 1 // PowReal(x+0ϵ₁+0ϵ₂, +Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1 {d: Number{Real: 2, E1mag: 0, E2mag: 0}, p: math.Inf(1), want: Number{Real: math.Inf(1), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 0, E2mag: 0}, p: math.Inf(1), want: Number{Real: math.Inf(1), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, // PowReal(x+xϵ₁+yϵ₂, +Inf) = +Inf+Infϵ₁+Infϵ₂+NaNϵ₁ϵ₂ for |x| > 1 {d: Number{Real: 2, E1mag: 1, E2mag: 1}, p: math.Inf(1), want: Number{Real: math.Inf(1), E1mag: math.Inf(1), E2mag: math.Inf(1), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 1, E2mag: 1}, p: math.Inf(1), want: Number{Real: math.Inf(1), E1mag: math.Inf(1), E2mag: math.Inf(1), E1E2mag: math.NaN()}}, {d: Number{Real: 2, E1mag: 2, E2mag: 2}, p: math.Inf(1), want: Number{Real: math.Inf(1), E1mag: math.Inf(1), E2mag: math.Inf(1), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 2, E2mag: 2}, p: math.Inf(1), want: Number{Real: math.Inf(1), E1mag: math.Inf(1), E2mag: math.Inf(1), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 2, E2mag: 3}, p: math.Inf(1), want: Number{Real: math.Inf(1), E1mag: math.Inf(1), E2mag: math.Inf(1), E1E2mag: math.NaN()}}, // PowReal(x, -Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| > 1 {d: Number{Real: 2, E1mag: 0, E2mag: 0}, p: math.Inf(-1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 0, E2mag: 0}, p: math.Inf(-1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 2, E1mag: 1, E2mag: 1}, p: math.Inf(-1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 1, E2mag: 1}, p: math.Inf(-1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 2, E1mag: 2, E2mag: 2}, p: math.Inf(-1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 3, E1mag: 2, E2mag: 2}, p: math.Inf(-1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, // PowReal(x+yϵ₁+zϵ₂, +Inf) = +0+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1 {d: Number{Real: 0.1, E1mag: 0, E2mag: 0}, p: math.Inf(1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 0.1, E1mag: 0.1, E2mag: 0.1}, p: math.Inf(1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 0.2, E1mag: 0.2, E2mag: 0.2}, p: math.Inf(1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 0.5, E1mag: 0.3, E2mag: 0.5}, p: math.Inf(1), want: Number{Real: 0, E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, // PowReal(x+0ϵ₁+0ϵ₂, -Inf) = +Inf+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for |x| < 1 {d: Number{Real: 0.1, E1mag: 0, E2mag: 0}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: 0.2, E1mag: 0, E2mag: 0}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, // PowReal(x, -Inf) = +Inf-Infϵ₁-Infϵ₂+NaNϵ₁ϵ₂ for |x| < 1 {d: Number{Real: 0.1, E1mag: 0.1, E2mag: 0.1}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, {d: Number{Real: 0.2, E1mag: 0.1, E2mag: 0.1}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, {d: Number{Real: 0.1, E1mag: 0.2, E2mag: 0.2}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, {d: Number{Real: 0.2, E1mag: 0.3, E2mag: 0.2}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, {d: Number{Real: 0.1, E1mag: 1, E2mag: 1}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, {d: Number{Real: 0.2, E1mag: 1, E2mag: 1}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, {d: Number{Real: 0.1, E1mag: 2, E2mag: 2}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, {d: Number{Real: 0.2, E1mag: 2, E2mag: 2}, p: math.Inf(-1), want: Number{Real: math.Inf(1), E1mag: math.Inf(-1), E2mag: math.Inf(-1), E1E2mag: math.NaN()}}, // Handled by math.Pow tests: // // Pow(+Inf, y) = +Inf for y > 0 // Pow(+Inf, y) = +0 for y < 0 // Pow(-Inf, y) = Pow(-0, -y) // PowReal(x, y) = NaN+NaNϵ₁+NaNϵ₂+NaNϵ₁ϵ₂ for finite x < 0 and finite non-integer y {d: Number{Real: -1, E1mag: -1, E2mag: -1}, p: 0.5, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: -1, E1mag: 2, E2mag: 2}, p: 0.5, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, {d: Number{Real: -1, E1mag: -1, E2mag: 2}, p: 0.5, want: Number{Real: math.NaN(), E1mag: math.NaN(), E2mag: math.NaN(), E1E2mag: math.NaN()}}, } func TestPowReal(t *testing.T) { const tol = 1e-15 for _, test := range powRealTests { got := PowReal(test.d, test.p) if !sameHyperdual(got, test.want, tol) { t.Errorf("unexpected PowReal(%v, %v): got:%v want:%v", test.d, test.p, got, test.want) } } } func sameHyperdual(a, b Number, tol float64) bool { return same(a.Real, b.Real, tol) && same(a.E1mag, b.E1mag, tol) && same(a.E2mag, b.E2mag, tol) && same(a.E1E2mag, b.E1E2mag, tol) } func same(a, b, tol float64) bool { return (math.IsNaN(a) && math.IsNaN(b)) || (floats.EqualWithinAbsOrRel(a, b, tol, tol) && math.Float64bits(a)&(1<<63) == math.Float64bits(b)&(1<<63)) }