// Copyright ©2013 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. //go:generate go run generate_unit.go // Package unit provides a set of types and constants that facilitate // the use of the International System of Units (SI). // // The unit package provides two main functionalities: compile-time type-safe // base SI units and common derived units; and a system for dynamically // extensible user-defined units. // // Static SI units // // This package provides a number of types representing either an SI base // unit or a common combination of base units, named for the physical quantity // it represents (Length, Mass, Pressure, etc.). Each type is defined from // float64. The value of the float64 represents the quantity of that unit as // expressed in SI base units (kilogram, metre, Pascal, etc.). For example, // // height := 1.6 * unit.Metre // acc := unit.Acceleration(9.8) // // creates a variable named 'height' with a value of 1.6 metres, and // a variable named 'acc' with a value of 9.8 metres per second squared. // These types can be used to add compile-time safety to code. For // example, // // func unitVolume(t unit.Temperature, p unit.Pressure) unit.Volume { // ... // } // // func main(){ // t := 300 * unit.Kelvin // p := 500 * unit.Kilo * unit.Pascal // v := unitVolume(p, t) // compile-time error // } // // gives a compile-time error (temperature type does not match pressure type) // while the corresponding code using float64 runs without error. // // func float64Volume(temperature, pressure float64) float64 { // ... // } // // func main(){ // t := 300.0 // Kelvin // p := 500000.0 // Pascals // v := float64Volume(p, t) // no error // } // // Many types have constants defined representing named SI units (Metre, // Kilogram, etc. ) or SI derived units (Pascal, Hz, etc.). The unit package // additionally provides untyped constants for SI prefixes, so the following // are all equivalent. // // l := 0.001 * unit.Metre // k := 1 * unit.Milli * unit.Metre // j := unit.Length(0.001) // // Additional SI-derived static units can also be defined by adding types that // satisfy the Uniter interface described below. // // Dynamic user-extensible unit system // // The unit package also provides the Unit type, a representation of a general // dimensional value. Unit can be used to help prevent errors of dimensionality // when multiplying or dividing dimensional numbers defined a run time. New // variables of type Unit can be created with the New function and the // Dimensions map. For example, the code // // rate := unit.New(1 * unit.Milli, Dimensions{MoleDim: 1, TimeDim: -1}) // // creates a variable "rate" which has a value of 1e-3 mol/s. Methods of // unit can be used to modify this value, for example: // // rate.Mul(1 * unit.Centi * unit.Metre).Div(1 * unit.Milli * unit.Volt) // // To convert the unit back into a typed float64 value, the From methods // of the dimensional types should be used. From will return an error if the // dimensions do not match. // // var energy unit.Energy // err := energy.From(acc) // // Domain-specific problems may need custom dimensions, and for this purpose // NewDimension should be used to help avoid accidental overlap between // packages. For example, results from a blood test may be measured in // "White blood cells per slide". In this case, NewDimension should be // used to create a 'WhiteBloodCell' dimension. NewDimension takes in a // string which will be used for printing that dimension, and will return // a unique dimension number. // // wbc := unit.NewDimension("WhiteBloodCell") // // NewDimension should not be used, however, to create the unit of 'Slide', // because in this case slide is just a measurement of liquid volume. Instead, // a constant could be defined. // // const Slide unit.Volume = 0.1 * unit.Micro * unit.Litre // // Note that unit cannot catch all errors related to dimensionality. // Different physical ideas are sometimes expressed with the same dimensions // and unit is incapable of catching these mismatches. For example, energy and // torque are both expressed as force times distance (Newton-metres in SI), // but it is wrong to say that a torque of 10 N·m is the same as 10 J, even // though the dimensions agree. Despite this, using the defined types to // represent units can help to catch errors at compile-time. For example, // using unit.Torque allows you to define a statically typed function like so // // func LeverLength(apply unit.Force, want unit.Torque) unit.Length { // return unit.Length(float64(want)/float64(apply)) // } // // This will prevent an energy value being provided to LeverLength in place // of a torque value. package unit // import "gonum.org/v1/gonum/unit"