// Copyright ©2014 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package multi_test import ( "math" "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/graph" "gonum.org/v1/gonum/graph/internal/set" "gonum.org/v1/gonum/graph/iterator" "gonum.org/v1/gonum/graph/multi" "gonum.org/v1/gonum/graph/testgraph" ) func directedBuilder(nodes []graph.Node, edges []graph.WeightedLine, _, _ float64) (g graph.Graph, n []graph.Node, e []graph.Edge, s, a float64, ok bool) { seen := make(set.Nodes) dg := multi.NewDirectedGraph() for _, n := range nodes { seen.Add(n) dg.AddNode(n) } for _, edge := range edges { f := dg.Node(edge.From().ID()) if f == nil { f = edge.From() } t := dg.Node(edge.To().ID()) if t == nil { t = edge.To() } cl := multi.Line{F: f, T: t, UID: edge.ID()} seen.Add(cl.F) seen.Add(cl.T) e = append(e, cl) dg.SetLine(cl) } if len(seen) != 0 { n = make([]graph.Node, 0, len(seen)) } for _, sn := range seen { n = append(n, sn) } return dg, n, e, math.NaN(), math.NaN(), true } func TestDirected(t *testing.T) { t.Run("EdgeExistence", func(t *testing.T) { testgraph.EdgeExistence(t, directedBuilder) }) t.Run("LineExistence", func(t *testing.T) { testgraph.LineExistence(t, directedBuilder, true) }) t.Run("NodeExistence", func(t *testing.T) { testgraph.NodeExistence(t, directedBuilder) }) t.Run("ReturnAdjacentNodes", func(t *testing.T) { testgraph.ReturnAdjacentNodes(t, directedBuilder, true) }) t.Run("ReturnAllLines", func(t *testing.T) { testgraph.ReturnAllLines(t, directedBuilder, true) }) t.Run("ReturnAllNodes", func(t *testing.T) { testgraph.ReturnAllNodes(t, directedBuilder, true) }) t.Run("ReturnNodeSlice", func(t *testing.T) { testgraph.ReturnNodeSlice(t, directedBuilder, true) }) t.Run("AddNodes", func(t *testing.T) { testgraph.AddNodes(t, multi.NewDirectedGraph(), 100) }) t.Run("AddArbitraryNodes", func(t *testing.T) { testgraph.AddArbitraryNodes(t, multi.NewDirectedGraph(), testgraph.NewRandomNodes(100, 1, func(id int64) graph.Node { return multi.Node(id) }), ) }) t.Run("RemoveNodes", func(t *testing.T) { g := multi.NewDirectedGraph() it := testgraph.NewRandomNodes(100, 1, func(id int64) graph.Node { return multi.Node(id) }) for it.Next() { g.AddNode(it.Node()) } it.Reset() rnd := rand.New(rand.NewSource(1)) for it.Next() { u := it.Node() d := rnd.Intn(5) vit := g.Nodes() for d >= 0 && vit.Next() { v := vit.Node() d-- g.SetLine(g.NewLine(u, v)) } } testgraph.RemoveNodes(t, g) }) t.Run("AddLines", func(t *testing.T) { testgraph.AddLines(t, 100, multi.NewDirectedGraph(), func(id int64) graph.Node { return multi.Node(id) }, true, // Can update nodes. ) }) t.Run("RemoveLines", func(t *testing.T) { g := multi.NewDirectedGraph() it := testgraph.NewRandomNodes(100, 1, func(id int64) graph.Node { return multi.Node(id) }) for it.Next() { g.AddNode(it.Node()) } it.Reset() var lines []graph.Line rnd := rand.New(rand.NewSource(1)) for it.Next() { u := it.Node() d := rnd.Intn(5) vit := g.Nodes() for d >= 0 && vit.Next() { v := vit.Node() d-- l := g.NewLine(u, v) g.SetLine(l) lines = append(lines, l) } } rnd.Shuffle(len(lines), func(i, j int) { lines[i], lines[j] = lines[j], lines[i] }) testgraph.RemoveLines(t, g, iterator.NewOrderedLines(lines)) }) } // Tests Issue #27 func TestEdgeOvercounting(t *testing.T) { g := generateDummyGraph() if neigh := graph.NodesOf(g.From(int64(2))); len(neigh) != 2 { t.Errorf("Node 2 has incorrect number of neighbors got neighbors %v (count %d), expected 2 neighbors {0,1}", neigh, len(neigh)) } } func generateDummyGraph() *multi.DirectedGraph { nodes := [4]struct{ srcID, targetID int }{ {2, 1}, {1, 0}, {2, 0}, {0, 2}, } g := multi.NewDirectedGraph() for i, n := range nodes { g.SetLine(multi.Line{F: multi.Node(n.srcID), T: multi.Node(n.targetID), UID: int64(i)}) } return g } // Test for issue #123 https://github.com/gonum/graph/issues/123 func TestIssue123DirectedGraph(t *testing.T) { defer func() { if r := recover(); r != nil { t.Errorf("unexpected panic: %v", r) } }() g := multi.NewDirectedGraph() n0 := g.NewNode() g.AddNode(n0) n1 := g.NewNode() g.AddNode(n1) g.RemoveNode(n0.ID()) n2 := g.NewNode() g.AddNode(n2) }