// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package stat_test import ( "fmt" "math" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/integrate" "gonum.org/v1/gonum/stat" ) func ExampleROC_weighted() { y := []float64{0, 3, 5, 6, 7.5, 8} classes := []bool{true, false, true, false, false, false} weights := []float64{4, 1, 6, 3, 2, 2} tpr, fpr := stat.ROC(nil, y, classes, weights) fmt.Printf("true positive rate: %v\n", tpr) fmt.Printf("false positive rate: %v\n", fpr) // Output: // true positive rate: [0 0.4 0.4 1 1 1 1] // false positive rate: [0 0 0.125 0.125 0.5 0.75 1] } func ExampleROC_unweighted() { y := []float64{0, 3, 5, 6, 7.5, 8} classes := []bool{true, false, true, false, false, false} tpr, fpr := stat.ROC(nil, y, classes, nil) fmt.Printf("true positive rate: %v\n", tpr) fmt.Printf("false positive rate: %v\n", fpr) // Output: // true positive rate: [0 0.5 0.5 1 1 1 1] // false positive rate: [0 0 0.25 0.25 0.5 0.75 1] } func ExampleROC_unsorted() { y := []float64{8, 7.5, 6, 5, 3, 0} classes := []bool{false, false, false, true, false, true} weights := []float64{2, 2, 3, 6, 1, 4} stat.SortWeightedLabeled(y, classes, weights) tpr, fpr := stat.ROC(nil, y, classes, weights) fmt.Printf("true positive rate: %v\n", tpr) fmt.Printf("false positive rate: %v\n", fpr) // Output: // true positive rate: [0 0.4 0.4 1 1 1 1] // false positive rate: [0 0 0.125 0.125 0.5 0.75 1] } func ExampleROC_knownCutoffs() { y := []float64{8, 7.5, 6, 5, 3, 0} classes := []bool{false, false, false, true, false, true} weights := []float64{2, 2, 3, 6, 1, 4} cutoffs := []float64{-1, 3, 4} stat.SortWeightedLabeled(y, classes, weights) tpr, fpr := stat.ROC(cutoffs, y, classes, weights) fmt.Printf("true positive rate: %v\n", tpr) fmt.Printf("false positive rate: %v\n", fpr) // Output: // true positive rate: [0 0.4 0.4] // false positive rate: [0 0.125 0.125] } func ExampleROC_equallySpacedCutoffs() { y := []float64{8, 7.5, 6, 5, 3, 0} classes := []bool{false, false, false, true, false, true} weights := []float64{2, 2, 3, 6, 1, 4} n := 9 stat.SortWeightedLabeled(y, classes, weights) cutoffs := make([]float64, n) floats.Span(cutoffs, math.Nextafter(y[0], y[0]-1), y[len(y)-1]) tpr, fpr := stat.ROC(cutoffs, y, classes, weights) fmt.Printf("true positive rate: %v\n", tpr) fmt.Printf("false positive rate: %v\n", fpr) // Output: // true positive rate: [0 0.4 0.4 0.4 0.4 1 1 1 1] // false positive rate: [0 0 0 0.125 0.125 0.125 0.5 0.5 1] } func ExampleROC_aUC() { y := []float64{0.1, 0.35, 0.4, 0.8} classes := []bool{true, false, true, false} tpr, fpr := stat.ROC(nil, y, classes, nil) // Compute Area Under Curve. auc := integrate.Trapezoidal(fpr, tpr) fmt.Printf("true positive rate: %v\n", tpr) fmt.Printf("false positive rate: %v\n", fpr) fmt.Printf("auc: %v\n", auc) // Output: // true positive rate: [0 0.5 0.5 1 1] // false positive rate: [0 0 0.5 0.5 1] // auc: 0.75 }