// Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "math/rand/v2" "testing" "gonum.org/v1/gonum/floats/scalar" ) type Dorg2rer interface { Dgeqrfer Dorg2r(m, n, k int, a []float64, lda int, tau []float64, work []float64) } func Dorg2rTest(t *testing.T, impl Dorg2rer) { rnd := rand.New(rand.NewPCG(1, 1)) for ti, test := range []struct { m, n, k, lda int }{ {3, 3, 0, 0}, {4, 3, 0, 0}, {3, 3, 2, 0}, {4, 3, 2, 0}, {5, 5, 0, 20}, {5, 5, 3, 20}, {10, 5, 0, 20}, {10, 5, 2, 20}, } { m := test.m n := test.n lda := test.lda if lda == 0 { lda = test.n } // Allocate m×n matrix A and fill it with random numbers. a := make([]float64, m*lda) for i := range a { a[i] = rnd.NormFloat64() } // Compute the QR decomposition of A. tau := make([]float64, min(m, n)) work := make([]float64, 1) impl.Dgeqrf(m, n, a, lda, tau, work, -1) work = make([]float64, int(work[0])) impl.Dgeqrf(m, n, a, lda, tau, work, len(work)) // Compute the matrix Q explicitly using the first k elementary reflectors. k := test.k if k == 0 { k = n } q := constructQK("QR", m, n, k, a, lda, tau) // Compute the matrix Q using Dorg2r. impl.Dorg2r(m, n, k, a, lda, tau[:k], work) // Check that the first n columns of both results match. same := true loop: for i := 0; i < m; i++ { for j := 0; j < n; j++ { if !scalar.EqualWithinAbsOrRel(q.Data[i*q.Stride+j], a[i*lda+j], 1e-12, 1e-12) { same = false break loop } } } if !same { t.Errorf("Case %v: Q mismatch", ti) } } }