// Copyright ©2023 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "fmt" "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/lapack" ) type Dpttrser interface { Dpttrs(n, nrhs int, d, e []float64, b []float64, ldb int) Dpttrfer } func DpttrsTest(t *testing.T, impl Dpttrser) { rnd := rand.New(rand.NewSource(1)) for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 20, 50, 51, 52, 53, 54, 100} { for _, nrhs := range []int{0, 1, 2, 3, 4, 5, 10, 20, 50} { for _, ldb := range []int{max(1, nrhs), nrhs + 3} { dpttrsTest(t, impl, rnd, n, nrhs, ldb) } } } } func dpttrsTest(t *testing.T, impl Dpttrser, rnd *rand.Rand, n, nrhs, ldb int) { const tol = 1e-15 name := fmt.Sprintf("n=%v", n) // Generate a random diagonally dominant symmetric tridiagonal matrix A. d, e := newRandomSymTridiag(n, rnd) // Make a copy of d and e to hold the factorization. dFac := make([]float64, len(d)) copy(dFac, d) eFac := make([]float64, len(e)) copy(eFac, e) // Compute the Cholesky factorization of A. ok := impl.Dpttrf(n, dFac, eFac) if !ok { t.Errorf("%v: bad test matrix, Dpttrf failed", name) return } // Generate a random solution matrix X. xWant := randomGeneral(n, nrhs, ldb, rnd) // Compute the right-hand side. b := zeros(n, nrhs, ldb) dstmm(n, nrhs, d, e, xWant.Data, xWant.Stride, b.Data, b.Stride) // Solve A*X=B. impl.Dpttrs(n, nrhs, dFac, eFac, b.Data, b.Stride) resid := dpttrsResidual(b, xWant) if resid > tol { t.Errorf("%v: unexpected solution: |diff| = %v, want <= %v", name, resid, tol) } } // dstmm computes the matrix-matrix product // // C = A*B // // where A is an m×m symmetric tridiagonal matrix represented by the diagonal d // and subdiagonal e, and B and C are m×n matrices. func dstmm(m, n int, d, e []float64, b []float64, ldb int, c []float64, ldc int) { if m == 0 || n == 0 { return } if m == 1 { d0 := d[0] for j, b0j := range b[:n] { c[j] = d0 * b0j } return } for j := 0; j < n; j++ { c[j] = d[0]*b[j] + e[0]*b[ldb+j] } for i := 1; i < m-1; i++ { for j := 0; j < n; j++ { c[i*ldc+j] = e[i-1]*b[(i-1)*ldb+j] + d[i]*b[i*ldb+j] + e[i]*b[(i+1)*ldb+j] } } for j := 0; j < n; j++ { c[(m-1)*ldc+j] = e[m-2]*b[(m-2)*ldb+j] + d[m-1]*b[(m-1)*ldb+j] } } // dpttrsResidual returns |XGOT - XWANT|_1 / n. func dpttrsResidual(xGot, xWant blas64.General) float64 { n, nrhs := xGot.Rows, xGot.Cols d := zeros(n, nrhs, nrhs) for i := 0; i < n; i++ { for j := 0; j < nrhs; j++ { d.Data[i*d.Stride+j] = xGot.Data[i*xGot.Stride+j] - xWant.Data[i*xWant.Stride+j] } } return dlange(lapack.MaxColumnSum, n, nrhs, d.Data, d.Stride) / float64(n) }