// Copyright ©2015 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package native import ( "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" ) // Dtrtri computes the inverse of a triangular matrix, storing the result in place // into a. This is the BLAS level 3 version of the algorithm which builds upon // Dtrti2 to operate on matrix blocks instead of only individual columns. // // Dtrtri will not perform the inversion if the matrix is singular, and returns // a boolean indicating whether the inversion was successful. func (impl Implementation) Dtrtri(uplo blas.Uplo, diag blas.Diag, n int, a []float64, lda int) (ok bool) { checkMatrix(n, n, a, lda) if uplo != blas.Upper && uplo != blas.Lower { panic(badUplo) } if diag != blas.NonUnit && diag != blas.Unit { panic(badDiag) } if n == 0 { return false } nonUnit := diag == blas.NonUnit if nonUnit { for i := 0; i < n; i++ { if a[i*lda+i] == 0 { return false } } } bi := blas64.Implementation() nb := impl.Ilaenv(1, "DTRTRI", "UD", n, -1, -1, -1) if nb <= 1 || nb > n { impl.Dtrti2(uplo, diag, n, a, lda) return true } if uplo == blas.Upper { for j := 0; j < n; j += nb { jb := min(nb, n-j) bi.Dtrmm(blas.Left, blas.Upper, blas.NoTrans, diag, j, jb, 1, a, lda, a[j:], lda) bi.Dtrsm(blas.Right, blas.Upper, blas.NoTrans, diag, j, jb, -1, a[j*lda+j:], lda, a[j:], lda) impl.Dtrti2(blas.Upper, diag, jb, a[j*lda+j:], lda) } return true } nn := ((n - 1) / nb) * nb for j := nn; j >= 0; j -= nb { jb := min(nb, n-j) if j+jb <= n-1 { bi.Dtrmm(blas.Left, blas.Lower, blas.NoTrans, diag, n-j-jb, jb, 1, a[(j+jb)*lda+j+jb:], lda, a[(j+jb)*lda+j:], lda) bi.Dtrsm(blas.Right, blas.Lower, blas.NoTrans, diag, n-j-jb, jb, -1, a[j*lda+j:], lda, a[(j+jb)*lda+j:], lda) } impl.Dtrti2(blas.Lower, diag, jb, a[j*lda+j:], lda) } return true }