// Copyright ©2015 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package native import "gonum.org/v1/gonum/blas" // Dormr2 multiplies a general matrix C by an orthogonal matrix from a RQ factorization // determined by Dgerqf. // C = Q * C if side == blas.Left and trans == blas.NoTrans // C = Q^T * C if side == blas.Left and trans == blas.Trans // C = C * Q if side == blas.Right and trans == blas.NoTrans // C = C * Q^T if side == blas.Right and trans == blas.Trans // If side == blas.Left, a is a matrix of size k×m, and if side == blas.Right // a is of size k×n. // // tau contains the Householder factors and is of length at least k and this function // will panic otherwise. // // work is temporary storage of length at least n if side == blas.Left // and at least m if side == blas.Right and this function will panic otherwise. // // Dormr2 is an internal routine. It is exported for testing purposes. func (impl Implementation) Dormr2(side blas.Side, trans blas.Transpose, m, n, k int, a []float64, lda int, tau, c []float64, ldc int, work []float64) { if side != blas.Left && side != blas.Right { panic(badSide) } if trans != blas.Trans && trans != blas.NoTrans { panic(badTrans) } left := side == blas.Left notran := trans == blas.NoTrans if left { if k > m { panic(kGTM) } checkMatrix(k, m, a, lda) if len(work) < n { panic(badWork) } } else { if k > n { panic(kGTN) } checkMatrix(k, n, a, lda) if len(work) < m { panic(badWork) } } if len(tau) < k { panic(badTau) } checkMatrix(m, n, c, ldc) if m == 0 || n == 0 || k == 0 { return } if left { if notran { for i := k - 1; i >= 0; i-- { aii := a[i*lda+(m-k+i)] a[i*lda+(m-k+i)] = 1 impl.Dlarf(side, m-k+i+1, n, a[i*lda:], 1, tau[i], c, ldc, work) a[i*lda+(m-k+i)] = aii } return } for i := 0; i < k; i++ { aii := a[i*lda+(m-k+i)] a[i*lda+(m-k+i)] = 1 impl.Dlarf(side, m-k+i+1, n, a[i*lda:], 1, tau[i], c, ldc, work) a[i*lda+(m-k+i)] = aii } return } if notran { for i := 0; i < k; i++ { aii := a[i*lda+(n-k+i)] a[i*lda+(n-k+i)] = 1 impl.Dlarf(side, m, n-k+i+1, a[i*lda:], 1, tau[i], c, ldc, work) a[i*lda+(n-k+i)] = aii } return } for i := k - 1; i >= 0; i-- { aii := a[i*lda+(n-k+i)] a[i*lda+(n-k+i)] = 1 impl.Dlarf(side, m, n-k+i+1, a[i*lda:], 1, tau[i], c, ldc, work) a[i*lda+(n-k+i)] = aii } }