// Copyright ©2016 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package native import "gonum.org/v1/gonum/blas" // Dlarfx applies an elementary reflector H to a real m×n matrix C, from either // the left or the right, with loop unrolling when the reflector has order less // than 11. // // H is represented in the form // H = I - tau * v * v^T, // where tau is a real scalar and v is a real vector. If tau = 0, then H is // taken to be the identity matrix. // // v must have length equal to m if side == blas.Left, and equal to n if side == // blas.Right, otherwise Dlarfx will panic. // // c and ldc represent the m×n matrix C. On return, C is overwritten by the // matrix H * C if side == blas.Left, or C * H if side == blas.Right. // // work must have length at least n if side == blas.Left, and at least m if side // == blas.Right, otherwise Dlarfx will panic. work is not referenced if H has // order < 11. // // Dlarfx is an internal routine. It is exported for testing purposes. func (impl Implementation) Dlarfx(side blas.Side, m, n int, v []float64, tau float64, c []float64, ldc int, work []float64) { checkMatrix(m, n, c, ldc) switch side { case blas.Left: checkVector(m, v, 1) if m > 10 && len(work) < n { panic(badWork) } case blas.Right: checkVector(n, v, 1) if n > 10 && len(work) < m { panic(badWork) } default: panic(badSide) } if tau == 0 { return } if side == blas.Left { // Form H * C, where H has order m. switch m { default: // Code for general m. impl.Dlarf(side, m, n, v, 1, tau, c, ldc, work) return case 0: // No-op for zero size matrix. return case 1: // Special code for 1×1 Householder matrix. t0 := 1 - tau*v[0]*v[0] for j := 0; j < n; j++ { c[j] *= t0 } return case 2: // Special code for 2×2 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 } return case 3: // Special code for 3×3 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 } return case 4: // Special code for 4×4 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] + v3*c[3*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 c[3*ldc+j] -= sum * t3 } return case 5: // Special code for 5×5 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] + v3*c[3*ldc+j] + v4*c[4*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 c[3*ldc+j] -= sum * t3 c[4*ldc+j] -= sum * t4 } return case 6: // Special code for 6×6 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] + v3*c[3*ldc+j] + v4*c[4*ldc+j] + v5*c[5*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 c[3*ldc+j] -= sum * t3 c[4*ldc+j] -= sum * t4 c[5*ldc+j] -= sum * t5 } return case 7: // Special code for 7×7 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] + v3*c[3*ldc+j] + v4*c[4*ldc+j] + v5*c[5*ldc+j] + v6*c[6*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 c[3*ldc+j] -= sum * t3 c[4*ldc+j] -= sum * t4 c[5*ldc+j] -= sum * t5 c[6*ldc+j] -= sum * t6 } return case 8: // Special code for 8×8 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 v7 := v[7] t7 := tau * v7 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] + v3*c[3*ldc+j] + v4*c[4*ldc+j] + v5*c[5*ldc+j] + v6*c[6*ldc+j] + v7*c[7*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 c[3*ldc+j] -= sum * t3 c[4*ldc+j] -= sum * t4 c[5*ldc+j] -= sum * t5 c[6*ldc+j] -= sum * t6 c[7*ldc+j] -= sum * t7 } return case 9: // Special code for 9×9 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 v7 := v[7] t7 := tau * v7 v8 := v[8] t8 := tau * v8 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] + v3*c[3*ldc+j] + v4*c[4*ldc+j] + v5*c[5*ldc+j] + v6*c[6*ldc+j] + v7*c[7*ldc+j] + v8*c[8*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 c[3*ldc+j] -= sum * t3 c[4*ldc+j] -= sum * t4 c[5*ldc+j] -= sum * t5 c[6*ldc+j] -= sum * t6 c[7*ldc+j] -= sum * t7 c[8*ldc+j] -= sum * t8 } return case 10: // Special code for 10×10 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 v7 := v[7] t7 := tau * v7 v8 := v[8] t8 := tau * v8 v9 := v[9] t9 := tau * v9 for j := 0; j < n; j++ { sum := v0*c[j] + v1*c[ldc+j] + v2*c[2*ldc+j] + v3*c[3*ldc+j] + v4*c[4*ldc+j] + v5*c[5*ldc+j] + v6*c[6*ldc+j] + v7*c[7*ldc+j] + v8*c[8*ldc+j] + v9*c[9*ldc+j] c[j] -= sum * t0 c[ldc+j] -= sum * t1 c[2*ldc+j] -= sum * t2 c[3*ldc+j] -= sum * t3 c[4*ldc+j] -= sum * t4 c[5*ldc+j] -= sum * t5 c[6*ldc+j] -= sum * t6 c[7*ldc+j] -= sum * t7 c[8*ldc+j] -= sum * t8 c[9*ldc+j] -= sum * t9 } return } } // Form C * H, where H has order n. switch n { default: // Code for general n. impl.Dlarf(side, m, n, v, 1, tau, c, ldc, work) return case 0: // No-op for zero size matrix. return case 1: // Special code for 1×1 Householder matrix. t0 := 1 - tau*v[0]*v[0] for j := 0; j < m; j++ { c[j*ldc] *= t0 } return case 2: // Special code for 2×2 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] cs[0] -= sum * t0 cs[1] -= sum * t1 } return case 3: // Special code for 3×3 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 } return case 4: // Special code for 4×4 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] + v3*cs[3] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 cs[3] -= sum * t3 } return case 5: // Special code for 5×5 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] + v3*cs[3] + v4*cs[4] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 cs[3] -= sum * t3 cs[4] -= sum * t4 } return case 6: // Special code for 6×6 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] + v3*cs[3] + v4*cs[4] + v5*cs[5] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 cs[3] -= sum * t3 cs[4] -= sum * t4 cs[5] -= sum * t5 } return case 7: // Special code for 7×7 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] + v3*cs[3] + v4*cs[4] + v5*cs[5] + v6*cs[6] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 cs[3] -= sum * t3 cs[4] -= sum * t4 cs[5] -= sum * t5 cs[6] -= sum * t6 } return case 8: // Special code for 8×8 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 v7 := v[7] t7 := tau * v7 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] + v3*cs[3] + v4*cs[4] + v5*cs[5] + v6*cs[6] + v7*cs[7] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 cs[3] -= sum * t3 cs[4] -= sum * t4 cs[5] -= sum * t5 cs[6] -= sum * t6 cs[7] -= sum * t7 } return case 9: // Special code for 9×9 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 v7 := v[7] t7 := tau * v7 v8 := v[8] t8 := tau * v8 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] + v3*cs[3] + v4*cs[4] + v5*cs[5] + v6*cs[6] + v7*cs[7] + v8*cs[8] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 cs[3] -= sum * t3 cs[4] -= sum * t4 cs[5] -= sum * t5 cs[6] -= sum * t6 cs[7] -= sum * t7 cs[8] -= sum * t8 } return case 10: // Special code for 10×10 Householder matrix. v0 := v[0] t0 := tau * v0 v1 := v[1] t1 := tau * v1 v2 := v[2] t2 := tau * v2 v3 := v[3] t3 := tau * v3 v4 := v[4] t4 := tau * v4 v5 := v[5] t5 := tau * v5 v6 := v[6] t6 := tau * v6 v7 := v[7] t7 := tau * v7 v8 := v[8] t8 := tau * v8 v9 := v[9] t9 := tau * v9 for j := 0; j < m; j++ { cs := c[j*ldc:] sum := v0*cs[0] + v1*cs[1] + v2*cs[2] + v3*cs[3] + v4*cs[4] + v5*cs[5] + v6*cs[6] + v7*cs[7] + v8*cs[8] + v9*cs[9] cs[0] -= sum * t0 cs[1] -= sum * t1 cs[2] -= sum * t2 cs[3] -= sum * t3 cs[4] -= sum * t4 cs[5] -= sum * t5 cs[6] -= sum * t6 cs[7] -= sum * t7 cs[8] -= sum * t8 cs[9] -= sum * t9 } return } }