// Copyright ©2016 The gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package native import "gonum.org/v1/gonum/blas" // Dormhr multiplies an m×n general matrix C with an nq×nq orthogonal matrix Q // Q * C, if side == blas.Left and trans == blas.NoTrans, // Q^T * C, if side == blas.Left and trans == blas.Trans, // C * Q, if side == blas.Right and trans == blas.NoTrans, // C * Q^T, if side == blas.Right and trans == blas.Trans, // where nq == m if side == blas.Left and nq == n if side == blas.Right. // // Q is defined implicitly as the product of ihi-ilo elementary reflectors, as // returned by Dgehrd: // Q = H_{ilo} H_{ilo+1} ... H_{ihi-1}. // Q is equal to the identity matrix except in the submatrix // Q[ilo+1:ihi+1,ilo+1:ihi+1]. // // ilo and ihi must have the same values as in the previous call of Dgehrd. It // must hold that // 0 <= ilo <= ihi < m, if m > 0 and side == blas.Left, // ilo = 0 and ihi = -1, if m = 0 and side == blas.Left, // 0 <= ilo <= ihi < n, if n > 0 and side == blas.Right, // ilo = 0 and ihi = -1, if n = 0 and side == blas.Right. // // a and lda represent an m×m matrix if side == blas.Left and an n×n matrix if // side == blas.Right. The matrix contains vectors which define the elementary // reflectors, as returned by Dgehrd. // // tau contains the scalar factors of the elementary reflectors, as returned by // Dgehrd. tau must have length m-1 if side == blas.Left and n-1 if side == // blas.Right. // // c and ldc represent the m×n matrix C. On return, c is overwritten by the // product with Q. // // work must have length at least max(1,lwork), and lwork must be at least // max(1,n), if side == blas.Left, and max(1,m), if side == blas.Right. For // optimum performance lwork should be at least n*nb if side == blas.Left and // m*nb if side == blas.Right, where nb is the optimal block size. On return, // work[0] will contain the optimal value of lwork. // // If lwork == -1, instead of performing Dormhr, only the optimal value of lwork // will be stored in work[0]. // // If any requirement on input sizes is not met, Dormhr will panic. // // Dormhr is an internal routine. It is exported for testing purposes. func (impl Implementation) Dormhr(side blas.Side, trans blas.Transpose, m, n, ilo, ihi int, a []float64, lda int, tau, c []float64, ldc int, work []float64, lwork int) { var ( nq int // The order of Q. nw int // The minimum length of work. ) switch side { case blas.Left: nq = m nw = n case blas.Right: nq = n nw = m default: panic(badSide) } switch { case trans != blas.NoTrans && trans != blas.Trans: panic(badTrans) case ilo < 0 || max(1, nq) <= ilo: panic(badIlo) case ihi < min(ilo, nq-1) || nq <= ihi: panic(badIhi) case lwork < max(1, nw) && lwork != -1: panic(badWork) case len(work) < max(1, lwork): panic(shortWork) } if lwork != -1 { checkMatrix(m, n, c, ldc) checkMatrix(nq, nq, a, lda) if len(tau) != nq-1 && nq > 0 { panic(badTau) } } nh := ihi - ilo var nb int if side == blas.Left { opts := "LN" if trans == blas.Trans { opts = "LT" } nb = impl.Ilaenv(1, "DORMQR", opts, nh, n, nh, -1) } else { opts := "RN" if trans == blas.Trans { opts = "RT" } nb = impl.Ilaenv(1, "DORMQR", opts, m, nh, nh, -1) } lwkopt := max(1, nw) * nb if lwork == -1 { work[0] = float64(lwkopt) return } if m == 0 || n == 0 || nh == 0 { work[0] = 1 return } if side == blas.Left { impl.Dormqr(side, trans, nh, n, nh, a[(ilo+1)*lda+ilo:], lda, tau[ilo:ihi], c[(ilo+1)*ldc:], ldc, work, lwork) } else { impl.Dormqr(side, trans, m, nh, nh, a[(ilo+1)*lda+ilo:], lda, tau[ilo:ihi], c[ilo+1:], ldc, work, lwork) } work[0] = float64(lwkopt) }