// Copyright ©2019 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testlapack import ( "fmt" "math" "testing" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/floats" "gonum.org/v1/gonum/internal/rand" ) type Dlatbser interface { Dlatbs(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, normin bool, n, kd int, ab []float64, ldab int, x []float64, cnorm []float64) float64 } // DlatbsTest tests Dlatbs by generating a random triangular band system and // checking that a residual for the computed solution is small. func DlatbsTest(t *testing.T, impl Dlatbser) { rnd := rand.New(rand.NewSource(1)) for _, n := range []int{0, 1, 2, 3, 4, 5, 10, 50} { for _, kd := range []int{0, (n + 1) / 4, (3*n - 1) / 4, (5*n + 1) / 4} { for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} { for _, trans := range []blas.Transpose{blas.NoTrans, blas.Trans, blas.ConjTrans} { for _, ldab := range []int{kd + 1, kd + 1 + 7} { for _, kind := range []int{6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 17, 18} { dlatbsTest(t, impl, rnd, kind, uplo, trans, n, kd, ldab) } } } } } } } func dlatbsTest(t *testing.T, impl Dlatbser, rnd *rand.Rand, kind int, uplo blas.Uplo, trans blas.Transpose, n, kd, ldab int) { const eps = 1e-15 // Allocate a triangular band matrix. var ab []float64 if n > 0 { ab = make([]float64, (n-1)*ldab+kd+1) } for i := range ab { ab[i] = rnd.NormFloat64() } // Generate a triangular test matrix and the right-hand side. diag, b := dlattb(kind, uplo, trans, n, kd, ab, ldab, rnd) // Make a copy of AB to make sure that it is not modified in Dlatbs. abCopy := make([]float64, len(ab)) copy(abCopy, ab) // Allocate cnorm and fill it with impossible result to make sure that it // _is_ updated in the first Dlatbs call below. cnorm := make([]float64, n) for i := range cnorm { cnorm[i] = -1 } // Solve the system op(A)*x = b. x := make([]float64, n) copy(x, b) scale := impl.Dlatbs(uplo, trans, diag, false, n, kd, ab, ldab, x, cnorm) name := fmt.Sprintf("kind=%v,uplo=%v,trans=%v,diag=%v,n=%v,kd=%v,ldab=%v", kind, string(uplo), string(trans), string(diag), n, kd, ldab) if !floats.Equal(ab, abCopy) { t.Errorf("%v: unexpected modification of ab", name) } if floats.Count(func(v float64) bool { return v == -1 }, cnorm) > 0 { t.Errorf("%v: expected modification of cnorm", name) } resid := dlatbsResidual(uplo, trans, diag, n, kd, ab, ldab, scale, cnorm, b, x) if resid >= eps { t.Errorf("%v: unexpected result when normin=false. residual=%v", name, resid) } // Make a copy of cnorm to check that it is _not_ modified. cnormCopy := make([]float64, len(cnorm)) copy(cnormCopy, cnorm) // Restore x. copy(x, b) // Solve the system op(A)*x = b again with normin = true. scale = impl.Dlatbs(uplo, trans, diag, true, n, kd, ab, ldab, x, cnorm) // Cannot test for exact equality because Dlatbs may scale cnorm by s and // then by 1/s before return. if !floats.EqualApprox(cnorm, cnormCopy, 1e-15) { t.Errorf("%v: unexpected modification of cnorm", name) } resid = dlatbsResidual(uplo, trans, diag, n, kd, ab, ldab, scale, cnorm, b, x) if resid >= eps { t.Errorf("%v: unexpected result when normin=true. residual=%v", name, resid) } } // dlatbsResidual returns the residual for the solution to a scaled triangular // system of equations A*x = s*b or Aᵀ*x = s*b when A is an n×n triangular // band matrix with kd super- or sub-diagonals. The residual is computed as // // norm( op(A)*x - scale*b ) / ( norm(op(A)) * norm(x) ). // // This function corresponds to DTBT03 in Reference LAPACK. func dlatbsResidual(uplo blas.Uplo, trans blas.Transpose, diag blas.Diag, n, kd int, ab []float64, ldab int, scale float64, cnorm, b, x []float64) float64 { if n == 0 { return 0 } // Compute the norm of the triangular matrix A using the columns norms // already computed by Dlatbs. var tnorm float64 if diag == blas.NonUnit { if uplo == blas.Upper { for j := 0; j < n; j++ { tnorm = math.Max(tnorm, math.Abs(ab[j*ldab])+cnorm[j]) } } else { for j := 0; j < n; j++ { tnorm = math.Max(tnorm, math.Abs(ab[j*ldab+kd])+cnorm[j]) } } } else { for j := 0; j < n; j++ { tnorm = math.Max(tnorm, 1+cnorm[j]) } } const ( eps = dlamchE tiny = safmin ) bi := blas64.Implementation() ix := bi.Idamax(n, x, 1) xNorm := math.Max(1, math.Abs(x[ix])) xScal := (1 / xNorm) / float64(kd+1) resid := make([]float64, len(x)) copy(resid, x) bi.Dscal(n, xScal, resid, 1) bi.Dtbmv(uplo, trans, diag, n, kd, ab, ldab, resid, 1) bi.Daxpy(n, -scale*xScal, b, 1, resid, 1) ix = bi.Idamax(n, resid, 1) residNorm := math.Abs(resid[ix]) if residNorm*tiny <= xNorm { if xNorm > 0 { residNorm /= xNorm } } else if residNorm > 0 { residNorm = 1 / eps } if residNorm*tiny <= tnorm { if tnorm > 0 { residNorm /= tnorm } } else if residNorm > 0 { residNorm = 1 / eps } return residNorm }