// Copyright ©2018 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package distuv import ( "math" "gonum.org/v1/gonum/mathext" ) // Bhattacharyya is a type for computing the Bhattacharyya distance between // probability distributions. // // The Bhattacharyya distance is defined as // D_B = -ln(BC(l,r)) // BC = \int_-∞^∞ (p(x)q(x))^(1/2) dx // Where BC is known as the Bhattacharyya coefficient. // The Bhattacharyya distance is related to the Hellinger distance by // H(l,r) = sqrt(1-BC(l,r)) // For more information, see // https://en.wikipedia.org/wiki/Bhattacharyya_distance type Bhattacharyya struct{} // DistBeta returns the Bhattacharyya distance between Beta distributions l and r. // For Beta distributions, the Bhattacharyya distance is given by // -ln(B((α_l + α_r)/2, (β_l + β_r)/2) / (B(α_l,β_l), B(α_r,β_r))) // Where B is the Beta function. func (Bhattacharyya) DistBeta(l, r Beta) float64 { // Reference: https://en.wikipedia.org/wiki/Hellinger_distance#Examples return -mathext.Lbeta((l.Alpha+r.Alpha)/2, (l.Beta+r.Beta)/2) + 0.5*mathext.Lbeta(l.Alpha, l.Beta) + 0.5*mathext.Lbeta(r.Alpha, r.Beta) } // DistNormal returns the Bhattacharyya distance Normal distributions l and r. // For Normal distributions, the Bhattacharyya distance is given by // s = (σ_l^2 + σ_r^2)/2 // BC = 1/8 (μ_l-μ_r)^2/s + 1/2 ln(s/(σ_l*σ_r)) func (Bhattacharyya) DistNormal(l, r Normal) float64 { // Reference: https://en.wikipedia.org/wiki/Bhattacharyya_distance m := l.Mu - r.Mu s := (l.Sigma*l.Sigma + r.Sigma*r.Sigma) / 2 return 0.125*m*m/s + 0.5*math.Log(s) - 0.5*math.Log(l.Sigma) - 0.5*math.Log(r.Sigma) } // Hellinger is a type for computing the Hellinger distance between probability // distributions. // // The Hellinger distance is defined as // H^2(l,r) = 1/2 * int_x (\sqrt(l(x)) - \sqrt(r(x)))^2 dx // and is bounded between 0 and 1. Note the above formula defines the squared // Hellinger distance, while this returns the Hellinger distance itself. // The Hellinger distance is related to the Bhattacharyya distance by // H^2 = 1 - exp(-D_B) // For more information, see // https://en.wikipedia.org/wiki/Hellinger_distance type Hellinger struct{} // DistBeta computes the Hellinger distance between Beta distributions l and r. // See the documentation of Bhattacharyya.DistBeta for the distance formula. func (Hellinger) DistBeta(l, r Beta) float64 { db := Bhattacharyya{}.DistBeta(l, r) bc := math.Exp(-db) return math.Sqrt(1 - bc) } // DistNormal computes the Hellinger distance between Normal distributions l and r. // See the documentation of Bhattacharyya.DistNormal for the distance formula. func (Hellinger) DistNormal(l, r Normal) float64 { db := Bhattacharyya{}.DistNormal(l, r) bc := math.Exp(-db) return math.Sqrt(1 - bc) } // KullbackLeibler is a type for computing the Kullback-Leibler divergence from l to r. // // The Kullback-Leibler divergence is defined as // D_KL(l || r ) = \int_x p(x) log(p(x)/q(x)) dx // Note that the Kullback-Leibler divergence is not symmetric with respect to // the order of the input arguments. type KullbackLeibler struct{} // DistBeta returns the Kullback-Leibler divergence between Beta distributions // l and r. // // For two Beta distributions, the KL divergence is computed as // D_KL(l || r) = log Γ(α_l+β_l) - log Γ(α_l) - log Γ(β_l) // - log Γ(α_r+β_r) + log Γ(α_r) + log Γ(β_r) // + (α_l-α_r)(ψ(α_l)-ψ(α_l+β_l)) + (β_l-β_r)(ψ(β_l)-ψ(α_l+β_l)) // Where Γ is the gamma function and ψ is the digamma function. func (KullbackLeibler) DistBeta(l, r Beta) float64 { // http://bariskurt.com/kullback-leibler-divergence-between-two-dirichlet-and-beta-distributions/ if l.Alpha <= 0 || l.Beta <= 0 { panic("distuv: bad parameters for left distribution") } if r.Alpha <= 0 || r.Beta <= 0 { panic("distuv: bad parameters for right distribution") } lab := l.Alpha + l.Beta l1, _ := math.Lgamma(lab) l2, _ := math.Lgamma(l.Alpha) l3, _ := math.Lgamma(l.Beta) lt := l1 - l2 - l3 r1, _ := math.Lgamma(r.Alpha + r.Beta) r2, _ := math.Lgamma(r.Alpha) r3, _ := math.Lgamma(r.Beta) rt := r1 - r2 - r3 d0 := mathext.Digamma(l.Alpha + l.Beta) ct := (l.Alpha-r.Alpha)*(mathext.Digamma(l.Alpha)-d0) + (l.Beta-r.Beta)*(mathext.Digamma(l.Beta)-d0) return lt - rt + ct } // DistNormal returns the Kullback-Leibler divergence between Normal distributions // l and r. // // For two Normal distributions, the KL divergence is computed as // D_KL(l || r) = log(σ_r / σ_l) + (σ_l^2 + (μ_l-μ_r)^2)/(2 * σ_r^2) - 0.5 func (KullbackLeibler) DistNormal(l, r Normal) float64 { d := l.Mu - r.Mu v := (l.Sigma*l.Sigma + d*d) / (2 * r.Sigma * r.Sigma) return math.Log(r.Sigma) - math.Log(l.Sigma) + v - 0.5 }