// Copyright ©2017 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package distuv import ( "math" "golang.org/x/exp/rand" "gonum.org/v1/gonum/mathext" ) // Poisson implements the Poisson distribution, a discrete probability distribution // that expresses the probability of a given number of events occurring in a fixed // interval. // The poisson distribution has density function: // f(k) = λ^k / k! e^(-λ) // For more information, see https://en.wikipedia.org/wiki/Poisson_distribution. type Poisson struct { // Lambda is the average number of events in an interval. // Lambda must be greater than 0. Lambda float64 Src rand.Source } // CDF computes the value of the cumulative distribution function at x. func (p Poisson) CDF(x float64) float64 { if x < 0 { return 0 } return mathext.GammaIncComp(math.Floor(x+1), p.Lambda) } // ExKurtosis returns the excess kurtosis of the distribution. func (p Poisson) ExKurtosis() float64 { return 1 / p.Lambda } // LogProb computes the natural logarithm of the value of the probability // density function at x. func (p Poisson) LogProb(x float64) float64 { if x < 0 || math.Floor(x) != x { return math.Inf(-1) } lg, _ := math.Lgamma(math.Floor(x) + 1) return x*math.Log(p.Lambda) - p.Lambda - lg } // Mean returns the mean of the probability distribution. func (p Poisson) Mean() float64 { return p.Lambda } // NumParameters returns the number of parameters in the distribution. func (Poisson) NumParameters() int { return 1 } // Prob computes the value of the probability density function at x. func (p Poisson) Prob(x float64) float64 { return math.Exp(p.LogProb(x)) } // Rand returns a random sample drawn from the distribution. func (p Poisson) Rand() float64 { // NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) // p. 294 // rnd := rand.ExpFloat64 var rng *rand.Rand if p.Src != nil { rng = rand.New(p.Src) rnd = rng.ExpFloat64 } if p.Lambda < 10.0 { // Use direct method. var em float64 t := 0.0 for { t += rnd() if t >= p.Lambda { break } em++ } return em } // Use rejection method. rnd = rand.Float64 if rng != nil { rnd = rng.Float64 } sq := math.Sqrt(2.0 * p.Lambda) alxm := math.Log(p.Lambda) lg, _ := math.Lgamma(p.Lambda + 1) g := p.Lambda*alxm - lg for { var em, y float64 for { y = math.Tan(math.Pi * rnd()) em = sq*y + p.Lambda if em >= 0 { break } } em = math.Floor(em) lg, _ = math.Lgamma(em + 1) t := 0.9 * (1.0 + y*y) * math.Exp(em*alxm-lg-g) if rnd() <= t { return em } } } // Skewness returns the skewness of the distribution. func (p Poisson) Skewness() float64 { return 1 / math.Sqrt(p.Lambda) } // StdDev returns the standard deviation of the probability distribution. func (p Poisson) StdDev() float64 { return math.Sqrt(p.Variance()) } // Survival returns the survival function (complementary CDF) at x. func (p Poisson) Survival(x float64) float64 { return 1 - p.CDF(x) } // Variance returns the variance of the probability distribution. func (p Poisson) Variance() float64 { return p.Lambda }