// Copyright ©2018 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package distuv import ( "math" "golang.org/x/exp/rand" "gonum.org/v1/gonum/mathext" "gonum.org/v1/gonum/stat/combin" ) // Binomial implements the binomial distribution, a discrete probability distribution // that expresses the probability of a given number of successful Bernoulli trials // out of a total of n, each with successs probability p. // The binomial distribution has the density function: // f(k) = (n choose k) p^k (1-p)^(n-k) // For more information, see https://en.wikipedia.org/wiki/Binomial_distribution. type Binomial struct { // N is the total number of Bernoulli trials. N must be greater than 0. N float64 // P is the probablity of success in any given trial. P must be in [0, 1]. P float64 Src rand.Source } // CDF computes the value of the cumulative distribution function at x. func (b Binomial) CDF(x float64) float64 { if x < 0 { return 0 } if x >= b.N { return 1 } x = math.Floor(x) return mathext.RegIncBeta(b.N-x, x+1, 1-b.P) } // ExKurtosis returns the excess kurtosis of the distribution. func (b Binomial) ExKurtosis() float64 { v := b.P * (1 - b.P) return (1 - 6*v) / (b.N * v) } // LogProb computes the natural logarithm of the value of the probability // density function at x. func (b Binomial) LogProb(x float64) float64 { if x < 0 || x > b.N || math.Floor(x) != x { return math.Inf(-1) } lb := combin.LogGeneralizedBinomial(b.N, x) return lb + x*math.Log(b.P) + (b.N-x)*math.Log(1-b.P) } // Mean returns the mean of the probability distribution. func (b Binomial) Mean() float64 { return b.N * b.P } // NumParameters returns the number of parameters in the distribution. func (Binomial) NumParameters() int { return 2 } // Prob computes the value of the probability density function at x. func (b Binomial) Prob(x float64) float64 { return math.Exp(b.LogProb(x)) } // Rand returns a random sample drawn from the distribution. func (b Binomial) Rand() float64 { // NUMERICAL RECIPES IN C: THE ART OF SCIENTIFIC COMPUTING (ISBN 0-521-43108-5) // p. 295-6 // http://www.aip.de/groups/soe/local/numres/bookcpdf/c7-3.pdf runif := rand.Float64 rexp := rand.ExpFloat64 if b.Src != nil { rnd := rand.New(b.Src) runif = rnd.Float64 rexp = rnd.ExpFloat64 } p := b.P if p > 0.5 { p = 1 - p } am := b.N * p if b.N < 25 { // Use direct method. bnl := 0.0 for i := 0; i < int(b.N); i++ { if runif() < p { bnl++ } } if p != b.P { return b.N - bnl } return bnl } if am < 1 { // Use rejection method with Poisson proposal. const logM = 2.6e-2 // constant for rejection sampling (https://en.wikipedia.org/wiki/Rejection_sampling) var bnl float64 z := -p pclog := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z) // Padé approximant of log(1 + x) for { bnl = 0.0 t := 0.0 for i := 0; i < int(b.N); i++ { t += rexp() if t >= am { break } bnl++ } bnlc := b.N - bnl z = -bnl / b.N log1p := (1 + 0.5*z) * z / (1 + (1+1.0/6*z)*z) t = (bnlc+0.5)*log1p + bnl - bnlc*pclog + 1/(12*bnlc) - am + logM // Uses Stirling's expansion of log(n!) if rexp() >= t { break } } if p != b.P { return b.N - bnl } return bnl } // Original algorithm samples from a Poisson distribution with the // appropriate expected value. However, the Poisson approximation is // asymptotic such that the absolute deviation in probability is O(1/n). // Rejection sampling produces exact variates with at worst less than 3% // rejection with miminal additional computation. // Use rejection method with Cauchy proposal. g, _ := math.Lgamma(b.N + 1) plog := math.Log(p) pclog := math.Log1p(-p) sq := math.Sqrt(2 * am * (1 - p)) for { var em, y float64 for { y = math.Tan(math.Pi * runif()) em = sq*y + am if em >= 0 && em < b.N+1 { break } } em = math.Floor(em) lg1, _ := math.Lgamma(em + 1) lg2, _ := math.Lgamma(b.N - em + 1) t := 1.2 * sq * (1 + y*y) * math.Exp(g-lg1-lg2+em*plog+(b.N-em)*pclog) if runif() <= t { if p != b.P { return b.N - em } return em } } } // Skewness returns the skewness of the distribution. func (b Binomial) Skewness() float64 { return (1 - 2*b.P) / b.StdDev() } // StdDev returns the standard deviation of the probability distribution. func (b Binomial) StdDev() float64 { return math.Sqrt(b.Variance()) } // Survival returns the survival function (complementary CDF) at x. func (b Binomial) Survival(x float64) float64 { return 1 - b.CDF(x) } // Variance returns the variance of the probability distribution. func (b Binomial) Variance() float64 { return b.N * b.P * (1 - b.P) }