// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. /* * Cephes Math Library Release 2.1: January, 1989 * Copyright 1984, 1987, 1989 by Stephen L. Moshier * Direct inquiries to 30 Frost Street, Cambridge, MA 02140 */ package cephes import "math" // TODO(btracey): There is currently an implementation of this functionality // in gonum/stat/distuv. Find out which implementation is better, and rectify // by having distuv call this, or moving this implementation into // gonum/mathext/internal/gonum. // math.Sqrt(2*pi) const s2pi = 2.50662827463100050242E0 // approximation for 0 <= |y - 0.5| <= 3/8 var P0 = [5]float64{ -5.99633501014107895267E1, 9.80010754185999661536E1, -5.66762857469070293439E1, 1.39312609387279679503E1, -1.23916583867381258016E0, } var Q0 = [8]float64{ /* 1.00000000000000000000E0, */ 1.95448858338141759834E0, 4.67627912898881538453E0, 8.63602421390890590575E1, -2.25462687854119370527E2, 2.00260212380060660359E2, -8.20372256168333339912E1, 1.59056225126211695515E1, -1.18331621121330003142E0, } // Approximation for interval z = math.Sqrt(-2 log y ) between 2 and 8 // i.e., y between exp(-2) = .135 and exp(-32) = 1.27e-14. var P1 = [9]float64{ 4.05544892305962419923E0, 3.15251094599893866154E1, 5.71628192246421288162E1, 4.40805073893200834700E1, 1.46849561928858024014E1, 2.18663306850790267539E0, -1.40256079171354495875E-1, -3.50424626827848203418E-2, -8.57456785154685413611E-4, } var Q1 = [8]float64{ /* 1.00000000000000000000E0, */ 1.57799883256466749731E1, 4.53907635128879210584E1, 4.13172038254672030440E1, 1.50425385692907503408E1, 2.50464946208309415979E0, -1.42182922854787788574E-1, -3.80806407691578277194E-2, -9.33259480895457427372E-4, } // Approximation for interval z = math.Sqrt(-2 log y ) between 8 and 64 // i.e., y between exp(-32) = 1.27e-14 and exp(-2048) = 3.67e-890. var P2 = [9]float64{ 3.23774891776946035970E0, 6.91522889068984211695E0, 3.93881025292474443415E0, 1.33303460815807542389E0, 2.01485389549179081538E-1, 1.23716634817820021358E-2, 3.01581553508235416007E-4, 2.65806974686737550832E-6, 6.23974539184983293730E-9, } var Q2 = [8]float64{ /* 1.00000000000000000000E0, */ 6.02427039364742014255E0, 3.67983563856160859403E0, 1.37702099489081330271E0, 2.16236993594496635890E-1, 1.34204006088543189037E-2, 3.28014464682127739104E-4, 2.89247864745380683936E-6, 6.79019408009981274425E-9, } // Ndtri returns the argument, x, for which the area under the // Gaussian probability density function (integrated from // minus infinity to x) is equal to y. func Ndtri(y0 float64) float64 { // For small arguments 0 < y < exp(-2), the program computes // z = math.Sqrt( -2.0 * math.Log(y) ); then the approximation is // x = z - math.Log(z)/z - (1/z) P(1/z) / Q(1/z). // There are two rational functions P/Q, one for 0 < y < exp(-32) // and the other for y up to exp(-2). For larger arguments, // w = y - 0.5, and x/math.Sqrt(2pi) = w + w**3 R(w**2)/S(w**2)). var x, y, z, y2, x0, x1 float64 var code int if y0 <= 0.0 { if y0 < 0 { panic(badParamOutOfBounds) } return math.Inf(-1) } if y0 >= 1.0 { if y0 > 1 { panic(badParamOutOfBounds) } return math.Inf(1) } code = 1 y = y0 if y > (1.0 - 0.13533528323661269189) { /* 0.135... = exp(-2) */ y = 1.0 - y code = 0 } if y > 0.13533528323661269189 { y = y - 0.5 y2 = y * y x = y + y*(y2*polevl(y2, P0[:], 4)/p1evl(y2, Q0[:], 8)) x = x * s2pi return (x) } x = math.Sqrt(-2.0 * math.Log(y)) x0 = x - math.Log(x)/x z = 1.0 / x if x < 8.0 { /* y > exp(-32) = 1.2664165549e-14 */ x1 = z * polevl(z, P1[:], 8) / p1evl(z, Q1[:], 8) } else { x1 = z * polevl(z, P2[:], 8) / p1evl(z, Q2[:], 8) } x = x0 - x1 if code != 0 { x = -x } return (x) }