// Copyright ©2017 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package functions import "math" // This file implements functions from the Virtual Library of Simulation Experiments. // https://www.sfu.ca/~ssurjano/optimization.html // In many cases gradients and Hessians have been added. In some cases, these // are not defined at certain points or manifolds. The gradient in these locations // has been set to 0. // Ackley implements the Ackley function, a function of arbitrary dimension that // has many local minima. It has a single global minimum of 0 at 0. Its typical // domain is the hypercube of [-32.768, 32.768]^d. // f(x) = -20 * exp(-0.2 sqrt(1/d sum_i x_i^2)) - exp(1/d sum_i cos(2π x_i)) + 20 + exp(1) // where d is the input dimension. // // Reference: // https://www.sfu.ca/~ssurjano/ackley.html (obtained June 2017) type Ackley struct{} func (Ackley) Func(x []float64) float64 { var ss, sc float64 for _, v := range x { ss += v * v sc += math.Cos(2 * math.Pi * v) } id := 1 / float64(len(x)) return -20*math.Exp(-0.2*math.Sqrt(id*ss)) - math.Exp(id*sc) + 20 + math.E } // Bukin6 implements Bukin's 6th function. The function is two-dimensional, with // the typical domain as x_0 ∈ [-15, -5], x_1 ∈ [-3, 3]. The function has a unique // global minimum at [-10, 1], and many local minima. // f(x) = 100 * sqrt(|x_1 - 0.01*x_0^2|) + 0.01*|x_0+10| // Reference: // https://www.sfu.ca/~ssurjano/bukin6.html (obtained June 2017) type Bukin6 struct{} func (Bukin6) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } return 100*math.Sqrt(math.Abs(x[1]-0.01*x[0]*x[0])) + 0.01*math.Abs(x[0]+10) } // CamelThree implements the three-hump camel function, a two-dimensional function // with three local minima, one of which is global. // The function is given by // f(x) = 2*x_0^2 - 1.05*x_0^4 + x_0^6/6 + x_0*x_1 + x_1^2 // with the global minimum at // x^* = (0, 0) // f(x^*) = 0 // The typical domain is x_i ∈ [-5, 5] for all i. // Reference: // https://www.sfu.ca/~ssurjano/camel3.html (obtained December 2017) type CamelThree struct{} func (c CamelThree) Func(x []float64) float64 { if len(x) != 2 { panic("camelthree: dimension must be 2") } x0 := x[0] x1 := x[1] x02 := x0 * x0 x04 := x02 * x02 return 2*x02 - 1.05*x04 + x04*x02/6 + x0*x1 + x1*x1 } // CamelSix implements the six-hump camel function, a two-dimensional function. // with six local minima, two of which are global. // The function is given by // f(x) = (4 - 2.1*x_0^2 + x_0^4/3)*x_0^2 + x_0*x_1 + (-4 + 4*x_1^2)*x_1^2 // with the global minima at // x^* = (0.0898, -0.7126), (-0.0898, 0.7126) // f(x^*) = -1.0316 // The typical domain is x_0 ∈ [-3, 3], x_1 ∈ [-2, 2]. // Reference: // https://www.sfu.ca/~ssurjano/camel6.html (obtained December 2017) type CamelSix struct{} func (c CamelSix) Func(x []float64) float64 { if len(x) != 2 { panic("camelsix: dimension must be 2") } x0 := x[0] x1 := x[1] x02 := x0 * x0 x12 := x1 * x1 return (4-2.1*x02+x02*x02/3)*x02 + x0*x1 + (-4+4*x12)*x12 } // CrossInTray implements the cross-in-tray function. The cross-in-tray function // is a two-dimensional function with many local minima, and four global minima // at (±1.3491, ±1.3491). The function is typically evaluated in the square // [-10,10]^2. // f(x) = -0.001(|sin(x_0)sin(x_1)exp(|100-sqrt((x_0^2+x_1^2)/π)|)|+1)^0.1 // Reference: // https://www.sfu.ca/~ssurjano/crossit.html (obtained June 2017) type CrossInTray struct{} func (CrossInTray) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] exp := math.Abs(100 - math.Sqrt((x0*x0+x1*x1)/math.Pi)) return -0.0001 * math.Pow(math.Abs(math.Sin(x0)*math.Sin(x1)*math.Exp(exp))+1, 0.1) } // DixonPrice implements the DixonPrice function, a function of arbitrary dimension // Its typical domain is the hypercube of [-10, 10]^d. // The function is given by // f(x) = (x_0-1)^2 + \sum_{i=1}^{d-1} (i+1) * (2*x_i^2-x_{i-1})^2 // where d is the input dimension. There is a single global minimum, which has // a location and value of // x_i^* = 2^{-(2^{i+1}-2)/(2^{i+1})} for i = 0, ..., d-1. // f(x^*) = 0 // Reference: // https://www.sfu.ca/~ssurjano/dixonpr.html (obtained June 2017) type DixonPrice struct{} func (DixonPrice) Func(x []float64) float64 { xp := x[0] v := (xp - 1) * (xp - 1) for i := 1; i < len(x); i++ { xn := x[i] tmp := (2*xn*xn - xp) v += float64(i+1) * tmp * tmp xp = xn } return v } // DropWave implements the drop-wave function, a two-dimensional function with // many local minima and one global minimum at 0. The function is typically evaluated // in the square [-5.12, 5.12]^2. // f(x) = - (1+cos(12*sqrt(x0^2+x1^2))) / (0.5*(x0^2+x1^2)+2) // Reference: // https://www.sfu.ca/~ssurjano/drop.html (obtained June 2017) type DropWave struct{} func (DropWave) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] num := 1 + math.Cos(12*math.Sqrt(x0*x0+x1*x1)) den := 0.5*(x0*x0+x1*x1) + 2 return -num / den } // Eggholder implements the Eggholder function, a two-dimensional function with // many local minima and one global minimum at [512, 404.2319]. The function // is typically evaluated in the square [-512, 512]^2. // f(x) = -(x_1+47)*sin(sqrt(|x_1+x_0/2+47|))-x_1*sin(sqrt(|x_0-(x_1+47)|)) // Reference: // https://www.sfu.ca/~ssurjano/egg.html (obtained June 2017) type Eggholder struct{} func (Eggholder) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] return -(x1+47)*math.Sin(math.Sqrt(math.Abs(x1+x0/2+47))) - x0*math.Sin(math.Sqrt(math.Abs(x0-x1-47))) } // GramacyLee implements the Gramacy-Lee function, a one-dimensional function // with many local minima. The function is typically evaluated on the domain [0.5, 2.5]. // f(x) = sin(10πx)/(2x) + (x-1)^4 // Reference: // https://www.sfu.ca/~ssurjano/grlee12.html (obtained June 2017) type GramacyLee struct{} func (GramacyLee) Func(x []float64) float64 { if len(x) != 1 { panic(badInputDim) } x0 := x[0] return math.Sin(10*math.Pi*x0)/(2*x0) + math.Pow(x0-1, 4) } // Griewank implements the Griewank function, a function of arbitrary dimension that // has many local minima. It has a single global minimum of 0 at 0. Its typical // domain is the hypercube of [-600, 600]^d. // f(x) = \sum_i x_i^2/4000 - \prod_i cos(x_i/sqrt(i)) + 1 // where d is the input dimension. // // Reference: // https://www.sfu.ca/~ssurjano/griewank.html (obtained June 2017) type Griewank struct{} func (Griewank) Func(x []float64) float64 { var ss float64 pc := 1.0 for i, v := range x { ss += v * v pc *= math.Cos(v / math.Sqrt(float64(i+1))) } return ss/4000 - pc + 1 } // HolderTable implements the Holder table function. The Holder table function // is a two-dimensional function with many local minima, and four global minima // at (±8.05502, ±9.66459). The function is typically evaluated in the square [-10,10]^2. // f(x) = -|sin(x_0)cos(x1)exp(|1-sqrt(x_0^2+x1^2)/π|)| // Reference: // https://www.sfu.ca/~ssurjano/holder.html (obtained June 2017) type HolderTable struct{} func (HolderTable) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] return -math.Abs(math.Sin(x0) * math.Cos(x1) * math.Exp(math.Abs(1-math.Sqrt(x0*x0+x1*x1)/math.Pi))) } // Langermann2 implements the two-dimensional version of the Langermann function. // The Langermann function has many local minima. The function is typically // evaluated in the square [0,10]^2. // f(x) = \sum_1^5 c_i exp(-(1/π)\sum_{j=1}^2(x_j-A_{ij})^2) * cos(π\sum_{j=1}^2 (x_j - A_{ij})^2) // c = [5]float64{1,2,5,2,3} // A = [5][2]float64{{3,5},{5,2},{2,1},{1,4},{7,9}} // Reference: // https://www.sfu.ca/~ssurjano/langer.html (obtained June 2017) type Langermann2 struct{} func (Langermann2) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } var ( c = [5]float64{1, 2, 5, 2, 3} A = [5][2]float64{{3, 5}, {5, 2}, {2, 1}, {1, 4}, {7, 9}} ) var f float64 for i, cv := range c { var ss float64 for j, av := range A[i] { xja := x[j] - av ss += xja * xja } f += cv * math.Exp(-(1/math.Pi)*ss) * math.Cos(math.Pi*ss) } return f } // Levy implements the Levy function, a function of arbitrary dimension that // has many local minima. It has a single global minimum of 0 at 1. Its typical // domain is the hypercube of [-10, 10]^d. // f(x) = sin^2(π*w_0) + \sum_{i=0}^{d-2}(w_i-1)^2*[1+10sin^2(π*w_i+1)] + // (w_{d-1}-1)^2*[1+sin^2(2π*w_{d-1})] // w_i = 1 + (x_i-1)/4 // where d is the input dimension. // // Reference: // https://www.sfu.ca/~ssurjano/levy.html (obtained June 2017) type Levy struct{} func (Levy) Func(x []float64) float64 { w1 := 1 + (x[0]-1)/4 s1 := math.Sin(math.Pi * w1) sum := s1 * s1 for i := 0; i < len(x)-1; i++ { wi := 1 + (x[i]-1)/4 s := math.Sin(math.Pi*wi + 1) sum += (wi - 1) * (wi - 1) * (1 + 10*s*s) } wd := 1 + (x[len(x)-1]-1)/4 sd := math.Sin(2 * math.Pi * wd) return sum + (wd-1)*(wd-1)*(1+sd*sd) } // Levy13 implements the Levy-13 function, a two-dimensional function // with many local minima. It has a single global minimum of 0 at 1. Its typical // domain is the square [-10, 10]^2. // f(x) = sin^2(3π*x_0) + (x_0-1)^2*[1+sin^2(3π*x_1)] + (x_1-1)^2*[1+sin^2(2π*x_1)] // Reference: // https://www.sfu.ca/~ssurjano/levy13.html (obtained June 2017) type Levy13 struct{} func (Levy13) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] s0 := math.Sin(3 * math.Pi * x0) s1 := math.Sin(3 * math.Pi * x1) s2 := math.Sin(2 * math.Pi * x1) return s0*s0 + (x0-1)*(x0-1)*(1+s1*s1) + (x1-1)*(x1-1)*(1+s2*s2) } // Rastrigin implements the Rastrigen function, a function of arbitrary dimension // that has many local minima. It has a single global minimum of 0 at 0. Its typical // domain is the hypercube of [-5.12, 5.12]^d. // f(x) = 10d + \sum_i [x_i^2 - 10cos(2π*x_i)] // where d is the input dimension. // // Reference: // https://www.sfu.ca/~ssurjano/rastr.html (obtained June 2017) type Rastrigin struct{} func (Rastrigin) Func(x []float64) float64 { sum := 10 * float64(len(x)) for _, v := range x { sum += v*v - 10*math.Cos(2*math.Pi*v) } return sum } // Schaffer2 implements the second Schaffer function, a two-dimensional function // with many local minima. It has a single global minimum of 0 at 0. Its typical // domain is the square [-100, 100]^2. // f(x) = 0.5 + (sin^2(x_0^2-x_1^2)-0.5) / (1+0.001*(x_0^2+x_1^2))^2 // Reference: // https://www.sfu.ca/~ssurjano/schaffer2.html (obtained June 2017) type Schaffer2 struct{} func (Schaffer2) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] s := math.Sin(x0*x0 - x1*x1) den := 1 + 0.001*(x0*x0+x1*x1) return 0.5 + (s*s-0.5)/(den*den) } // Schaffer4 implements the fourth Schaffer function, a two-dimensional function // with many local minima. Its typical domain is the square [-100, 100]^2. // f(x) = 0.5 + (cos(sin(|x_0^2-x_1^2|))-0.5) / (1+0.001*(x_0^2+x_1^2))^2 // Reference: // https://www.sfu.ca/~ssurjano/schaffer4.html (obtained June 2017) type Schaffer4 struct{} func (Schaffer4) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] den := 1 + 0.001*(x0*x0+x1*x1) return 0.5 + (math.Cos(math.Sin(math.Abs(x0*x0-x1*x1)))-0.5)/(den*den) } // Schwefel implements the Schwefel function, a function of arbitrary dimension // that has many local minima. Its typical domain is the hypercube of [-500, 500]^d. // f(x) = 418.9829*d - \sum_i x_i*sin(sqrt(|x_i|)) // where d is the input dimension. // // Reference: // https://www.sfu.ca/~ssurjano/schwef.html (obtained June 2017) type Schwefel struct{} func (Schwefel) Func(x []float64) float64 { var sum float64 for _, v := range x { sum += v * math.Sin(math.Sqrt(math.Abs(v))) } return 418.9829*float64(len(x)) - sum } // Shubert implements the Shubert function, a two-dimensional function // with many local minima and many global minima. Its typical domain is the // square [-10, 10]^2. // f(x) = (sum_{i=1}^5 i cos((i+1)*x_0+i)) * (\sum_{i=1}^5 i cos((i+1)*x_1+i)) // Reference: // https://www.sfu.ca/~ssurjano/shubert.html (obtained June 2017) type Shubert struct{} func (Shubert) Func(x []float64) float64 { if len(x) != 2 { panic(badInputDim) } x0 := x[0] x1 := x[1] var s0, s1 float64 for i := 1.0; i <= 5.0; i++ { s0 += i * math.Cos((i+1)*x0+i) s1 += i * math.Cos((i+1)*x1+i) } return s0 * s1 }