// Copyright ©2015 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mat import ( "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/blas" "gonum.org/v1/gonum/blas/blas64" "gonum.org/v1/gonum/floats" ) // TODO: Need to add tests where one is overwritten. func TestMulTypes(t *testing.T) { for _, test := range []struct { ar int ac int br int bc int Panics bool }{ { ar: 5, ac: 5, br: 5, bc: 5, Panics: false, }, { ar: 10, ac: 5, br: 5, bc: 3, Panics: false, }, { ar: 10, ac: 5, br: 5, bc: 8, Panics: false, }, { ar: 8, ac: 10, br: 10, bc: 3, Panics: false, }, { ar: 8, ac: 3, br: 3, bc: 10, Panics: false, }, { ar: 5, ac: 8, br: 8, bc: 10, Panics: false, }, { ar: 5, ac: 12, br: 12, bc: 8, Panics: false, }, { ar: 5, ac: 7, br: 8, bc: 10, Panics: true, }, } { ar := test.ar ac := test.ac br := test.br bc := test.bc // Generate random matrices avec := make([]float64, ar*ac) randomSlice(avec) a := NewDense(ar, ac, avec) bvec := make([]float64, br*bc) randomSlice(bvec) b := NewDense(br, bc, bvec) // Check that it panics if it is supposed to if test.Panics { c := &Dense{} fn := func() { c.Mul(a, b) } pan, _ := panics(fn) if !pan { t.Errorf("Mul did not panic with dimension mismatch") } continue } cvec := make([]float64, ar*bc) // Get correct matrix multiply answer from blas64.Gemm blas64.Gemm(blas.NoTrans, blas.NoTrans, 1, a.mat, b.mat, 0, blas64.General{Rows: ar, Cols: bc, Stride: bc, Data: cvec}, ) avecCopy := append([]float64{}, avec...) bvecCopy := append([]float64{}, bvec...) cvecCopy := append([]float64{}, cvec...) acomp := matComp{r: ar, c: ac, data: avecCopy} bcomp := matComp{r: br, c: bc, data: bvecCopy} ccomp := matComp{r: ar, c: bc, data: cvecCopy} // Do normal multiply with empty dense d := &Dense{} testMul(t, a, b, d, acomp, bcomp, ccomp, false, "empty receiver") // Normal multiply with existing receiver c := NewDense(ar, bc, cvec) randomSlice(cvec) testMul(t, a, b, c, acomp, bcomp, ccomp, false, "existing receiver") // Cast a as a basic matrix am := (*basicMatrix)(a) bm := (*basicMatrix)(b) d.Reset() testMul(t, am, b, d, acomp, bcomp, ccomp, true, "a is basic, receiver is empty") d.Reset() testMul(t, a, bm, d, acomp, bcomp, ccomp, true, "b is basic, receiver is empty") d.Reset() testMul(t, am, bm, d, acomp, bcomp, ccomp, true, "both basic, receiver is empty") randomSlice(cvec) testMul(t, am, b, d, acomp, bcomp, ccomp, true, "a is basic, receiver is full") randomSlice(cvec) testMul(t, a, bm, d, acomp, bcomp, ccomp, true, "b is basic, receiver is full") randomSlice(cvec) testMul(t, am, bm, d, acomp, bcomp, ccomp, true, "both basic, receiver is full") } } func randomSlice(s []float64) { for i := range s { s[i] = rand.NormFloat64() } } type matComp struct { r, c int data []float64 } func testMul(t *testing.T, a, b Matrix, c *Dense, acomp, bcomp, ccomp matComp, cvecApprox bool, name string) { c.Mul(a, b) var aDense *Dense switch t := a.(type) { case *Dense: aDense = t case *basicMatrix: aDense = (*Dense)(t) } var bDense *Dense switch t := b.(type) { case *Dense: bDense = t case *basicMatrix: bDense = (*Dense)(t) } if !denseEqual(aDense, acomp) { t.Errorf("a changed unexpectedly for %v", name) } if !denseEqual(bDense, bcomp) { t.Errorf("b changed unexpectedly for %v", name) } if cvecApprox { if !denseEqualApprox(c, ccomp, 1e-14) { t.Errorf("mul answer not within tol for %v", name) } return } if !denseEqual(c, ccomp) { t.Errorf("mul answer not equal for %v", name) } } type basicMatrix Dense var _ Matrix = &basicMatrix{} func (m *basicMatrix) At(r, c int) float64 { return (*Dense)(m).At(r, c) } func (m *basicMatrix) Dims() (r, c int) { return (*Dense)(m).Dims() } func (m *basicMatrix) T() Matrix { return Transpose{m} } type basicBanded BandDense var _ Banded = &basicBanded{} func (m *basicBanded) At(r, c int) float64 { return (*BandDense)(m).At(r, c) } func (m *basicBanded) Dims() (r, c int) { return (*BandDense)(m).Dims() } func (m *basicBanded) Bandwidth() (kl, ku int) { return (*BandDense)(m).Bandwidth() } func (m *basicBanded) T() Matrix { return Transpose{m} } func (m *basicBanded) TBand() Banded { return TransposeBand{m} } type basicSymmetric SymDense var _ Symmetric = &basicSymmetric{} func (m *basicSymmetric) At(r, c int) float64 { return (*SymDense)(m).At(r, c) } func (m *basicSymmetric) Dims() (r, c int) { return (*SymDense)(m).Dims() } func (m *basicSymmetric) T() Matrix { return m } func (m *basicSymmetric) Symmetric() int { return (*SymDense)(m).Symmetric() } type basicTriangular TriDense var _ Triangular = &basicTriangular{} func (m *basicTriangular) At(r, c int) float64 { return (*TriDense)(m).At(r, c) } func (m *basicTriangular) Dims() (r, c int) { return (*TriDense)(m).Dims() } func (m *basicTriangular) T() Matrix { return Transpose{m} } func (m *basicTriangular) Triangle() (int, TriKind) { return (*TriDense)(m).Triangle() } func (m *basicTriangular) TTri() Triangular { return TransposeTri{m} } type basicSymBanded SymBandDense var _ SymBanded = &basicSymBanded{} func (m *basicSymBanded) At(r, c int) float64 { return (*SymBandDense)(m).At(r, c) } func (m *basicSymBanded) Dims() (r, c int) { return (*SymBandDense)(m).Dims() } func (m *basicSymBanded) T() Matrix { return m } func (m *basicSymBanded) TBand() Banded { return m } func (m *basicSymBanded) Symmetric() int { return (*SymBandDense)(m).Symmetric() } func (m *basicSymBanded) SymBand() (n, k int) { return (*SymBandDense)(m).SymBand() } func (m *basicSymBanded) Bandwidth() (kl, ku int) { return (*SymBandDense)(m).Bandwidth() } type basicTriBanded TriBandDense var _ TriBanded = &basicTriBanded{} func (m *basicTriBanded) At(r, c int) float64 { return (*TriBandDense)(m).At(r, c) } func (m *basicTriBanded) Dims() (r, c int) { return (*TriBandDense)(m).Dims() } func (m *basicTriBanded) T() Matrix { return Transpose{m} } func (m *basicTriBanded) TTri() Triangular { return TransposeTri{m} } func (m *basicTriBanded) TBand() Banded { return TransposeBand{m} } func (m *basicTriBanded) TTriBand() TriBanded { return TransposeTriBand{m} } func (m *basicTriBanded) Bandwidth() (kl, ku int) { return (*TriBandDense)(m).Bandwidth() } func (m *basicTriBanded) Triangle() (int, TriKind) { return (*TriBandDense)(m).Triangle() } func (m *basicTriBanded) TriBand() (n, k int, kind TriKind) { return (*TriBandDense)(m).TriBand() } type basicDiagonal DiagDense var _ Diagonal = &basicDiagonal{} func (m *basicDiagonal) At(r, c int) float64 { return (*DiagDense)(m).At(r, c) } func (m *basicDiagonal) Dims() (r, c int) { return (*DiagDense)(m).Dims() } func (m *basicDiagonal) Diag() int { return (*DiagDense)(m).Diag() } func (m *basicDiagonal) T() Matrix { return Transpose{m} } func (m *basicDiagonal) TTri() Triangular { return TransposeTri{m} } func (m *basicDiagonal) TBand() Banded { return TransposeBand{m} } func (m *basicDiagonal) TTriBand() TriBanded { return TransposeTriBand{m} } func (m *basicDiagonal) Bandwidth() (kl, ku int) { return (*DiagDense)(m).Bandwidth() } func (m *basicDiagonal) Symmetric() int { return (*DiagDense)(m).Symmetric() } func (m *basicDiagonal) SymBand() (n, k int) { return (*DiagDense)(m).SymBand() } func (m *basicDiagonal) Triangle() (int, TriKind) { return (*DiagDense)(m).Triangle() } func (m *basicDiagonal) TriBand() (n, k int, kind TriKind) { return (*DiagDense)(m).TriBand() } func denseEqual(a *Dense, acomp matComp) bool { ar2, ac2 := a.Dims() if ar2 != acomp.r { return false } if ac2 != acomp.c { return false } if !floats.Equal(a.mat.Data, acomp.data) { return false } return true } func denseEqualApprox(a *Dense, acomp matComp, tol float64) bool { ar2, ac2 := a.Dims() if ar2 != acomp.r { return false } if ac2 != acomp.c { return false } if !floats.EqualApprox(a.mat.Data, acomp.data, tol) { return false } return true }