// Copyright ©2019 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package testblas import ( "fmt" "math/cmplx" "math/rand/v2" "testing" "gonum.org/v1/gonum/blas" ) type Zher2ker interface { Zher2k(uplo blas.Uplo, trans blas.Transpose, n, k int, alpha complex128, a []complex128, lda int, b []complex128, ldb int, beta float64, c []complex128, ldc int) } func Zher2kTest(t *testing.T, impl Zher2ker) { for _, uplo := range []blas.Uplo{blas.Upper, blas.Lower} { for _, trans := range []blas.Transpose{blas.NoTrans, blas.ConjTrans} { name := uploString(uplo) + "-" + transString(trans) t.Run(name, func(t *testing.T) { for _, n := range []int{0, 1, 2, 3, 4, 5} { for _, k := range []int{0, 1, 2, 3, 4, 5, 7} { zher2kTest(t, impl, uplo, trans, n, k) } } }) } } } func zher2kTest(t *testing.T, impl Zher2ker, uplo blas.Uplo, trans blas.Transpose, n, k int) { const tol = 1e-13 rnd := rand.New(rand.NewPCG(1, 1)) row, col := n, k if trans == blas.ConjTrans { row, col = k, n } for _, lda := range []int{max(1, col), col + 2} { for _, ldb := range []int{max(1, col), col + 3} { for _, ldc := range []int{max(1, n), n + 4} { for _, alpha := range []complex128{0, 1, complex(0.7, -0.9)} { for _, beta := range []float64{0, 1, 1.3} { // Allocate the matrix A and fill it with random numbers. a := make([]complex128, row*lda) for i := range a { a[i] = rndComplex128(rnd) } // Create a copy of A for checking that // Zher2k does not modify A. aCopy := make([]complex128, len(a)) copy(aCopy, a) // Allocate the matrix B and fill it with random numbers. b := make([]complex128, row*ldb) for i := range b { b[i] = rndComplex128(rnd) } // Create a copy of B for checking that // Zher2k does not modify B. bCopy := make([]complex128, len(b)) copy(bCopy, b) // Allocate the matrix C and fill it with random numbers. c := make([]complex128, n*ldc) for i := range c { c[i] = rndComplex128(rnd) } if (alpha == 0 || k == 0) && beta == 1 { // In case of a quick return // zero out the diagonal. for i := 0; i < n; i++ { c[i*ldc+i] = complex(real(c[i*ldc+i]), 0) } } // Create a copy of C for checking that // Zher2k does not modify its triangle // opposite to uplo. cCopy := make([]complex128, len(c)) copy(cCopy, c) // Create a copy of C expanded into a // full hermitian matrix for computing // the expected result using zmm. cHer := make([]complex128, len(c)) copy(cHer, c) if uplo == blas.Upper { for i := 0; i < n; i++ { cHer[i*ldc+i] = complex(real(cHer[i*ldc+i]), 0) for j := i + 1; j < n; j++ { cHer[j*ldc+i] = cmplx.Conj(cHer[i*ldc+j]) } } } else { for i := 0; i < n; i++ { for j := 0; j < i; j++ { cHer[j*ldc+i] = cmplx.Conj(cHer[i*ldc+j]) } cHer[i*ldc+i] = complex(real(cHer[i*ldc+i]), 0) } } // Compute the expected result using an internal Zgemm implementation. var want []complex128 if trans == blas.NoTrans { // C = alpha*A*Bᴴ + conj(alpha)*B*Aᴴ + beta*C tmp := zmm(blas.NoTrans, blas.ConjTrans, n, n, k, alpha, a, lda, b, ldb, complex(beta, 0), cHer, ldc) want = zmm(blas.NoTrans, blas.ConjTrans, n, n, k, cmplx.Conj(alpha), b, ldb, a, lda, 1, tmp, ldc) } else { // C = alpha*Aᴴ*B + conj(alpha)*Bᴴ*A + beta*C tmp := zmm(blas.ConjTrans, blas.NoTrans, n, n, k, alpha, a, lda, b, ldb, complex(beta, 0), cHer, ldc) want = zmm(blas.ConjTrans, blas.NoTrans, n, n, k, cmplx.Conj(alpha), b, ldb, a, lda, 1, tmp, ldc) } // Compute the result using Zher2k. impl.Zher2k(uplo, trans, n, k, alpha, a, lda, b, ldb, beta, c, ldc) prefix := fmt.Sprintf("n=%v,k=%v,lda=%v,ldb=%v,ldc=%v,alpha=%v,beta=%v", n, k, lda, ldb, ldc, alpha, beta) if !zsame(a, aCopy) { t.Errorf("%v: unexpected modification of A", prefix) continue } if !zsame(b, bCopy) { t.Errorf("%v: unexpected modification of B", prefix) continue } if uplo == blas.Upper && !zSameLowerTri(n, c, ldc, cCopy, ldc) { t.Errorf("%v: unexpected modification in lower triangle of C", prefix) continue } if uplo == blas.Lower && !zSameUpperTri(n, c, ldc, cCopy, ldc) { t.Errorf("%v: unexpected modification in upper triangle of C", prefix) continue } // Check that the diagonal of C has only real elements. hasRealDiag := true for i := 0; i < n; i++ { if imag(c[i*ldc+i]) != 0 { hasRealDiag = false break } } if !hasRealDiag { t.Errorf("%v: diagonal of C has imaginary elements\ngot=%v", prefix, c) continue } // Expand C into a full hermitian matrix // for comparison with the result from zmm. if uplo == blas.Upper { for i := 0; i < n-1; i++ { for j := i + 1; j < n; j++ { c[j*ldc+i] = cmplx.Conj(c[i*ldc+j]) } } } else { for i := 1; i < n; i++ { for j := 0; j < i; j++ { c[j*ldc+i] = cmplx.Conj(c[i*ldc+j]) } } } if !zEqualApprox(c, want, tol) { t.Errorf("%v: unexpected result\nwant=%v\ngot= %v", prefix, want, c) } } } } } } }