// Copyright ©2016 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package samplemv import ( "errors" "math" "golang.org/x/exp/rand" "gonum.org/v1/gonum/mat" "gonum.org/v1/gonum/stat/distmv" ) const errLengthMismatch = "samplemv: slice length mismatch" var ( _ Sampler = LatinHypercube{} _ Sampler = (*Rejection)(nil) _ Sampler = IID{} _ WeightedSampler = SampleUniformWeighted{} _ WeightedSampler = Importance{} ) func min(a, b int) int { if a < b { return a } return b } // Sampler generates a batch of samples according to the rule specified by the // implementing type. The number of samples generated is equal to rows(batch), // and the samples are stored in-place into the input. type Sampler interface { Sample(batch *mat.Dense) } // WeightedSampler generates a batch of samples and their relative weights // according to the rule specified by the implementing type. The number of samples // generated is equal to rows(batch), and the samples and weights // are stored in-place into the inputs. The length of weights must equal // rows(batch), otherwise SampleWeighted will panic. type WeightedSampler interface { SampleWeighted(batch *mat.Dense, weights []float64) } // SampleUniformWeighted wraps a Sampler type to create a WeightedSampler where all // weights are equal. type SampleUniformWeighted struct { Sampler } // SampleWeighted generates rows(batch) samples from the embedded Sampler type // and sets all of the weights equal to 1. If rows(batch) and len(weights) // of weights are not equal, SampleWeighted will panic. func (w SampleUniformWeighted) SampleWeighted(batch *mat.Dense, weights []float64) { r, _ := batch.Dims() if r != len(weights) { panic(errLengthMismatch) } w.Sample(batch) for i := range weights { weights[i] = 1 } } // LatinHypercube is a type for sampling using Latin hypercube sampling // from the given distribution. If src is not nil, it will be used to generate // random numbers, otherwise rand.Float64 will be used. // // Latin hypercube sampling divides the cumulative distribution function into equally // spaced bins and guarantees that one sample is generated per bin. Within each bin, // the location is randomly sampled. The distmv.NewUnitUniform function can be used // for easy sampling from the unit hypercube. type LatinHypercube struct { Q distmv.Quantiler Src rand.Source } // Sample generates rows(batch) samples using the LatinHypercube generation // procedure. func (l LatinHypercube) Sample(batch *mat.Dense) { latinHypercube(batch, l.Q, l.Src) } func latinHypercube(batch *mat.Dense, q distmv.Quantiler, src rand.Source) { r, c := batch.Dims() var f64 func() float64 var perm func(int) []int if src != nil { r := rand.New(src) f64 = r.Float64 perm = r.Perm } else { f64 = rand.Float64 perm = rand.Perm } r64 := float64(r) for i := 0; i < c; i++ { p := perm(r) for j := 0; j < r; j++ { v := f64()/r64 + float64(j)/r64 batch.Set(p[j], i, v) } } p := make([]float64, c) for i := 0; i < r; i++ { copy(p, batch.RawRowView(i)) q.Quantile(batch.RawRowView(i), p) } } // Importance is a type for performing importance sampling using the given // Target and Proposal distributions. // // Importance sampling is a variance reduction technique where samples are // generated from a proposal distribution, q(x), instead of the target distribution // p(x). This allows relatively unlikely samples in p(x) to be generated more frequently. // // The importance sampling weight at x is given by p(x)/q(x). To reduce variance, // a good proposal distribution will bound this sampling weight. This implies the // support of q(x) should be at least as broad as p(x), and q(x) should be "fatter tailed" // than p(x). type Importance struct { Target distmv.LogProber Proposal distmv.RandLogProber } // SampleWeighted generates rows(batch) samples using the Importance sampling // generation procedure. // // The length of weights must equal the length of batch, otherwise Importance will panic. func (l Importance) SampleWeighted(batch *mat.Dense, weights []float64) { importance(batch, weights, l.Target, l.Proposal) } func importance(batch *mat.Dense, weights []float64, target distmv.LogProber, proposal distmv.RandLogProber) { r, _ := batch.Dims() if r != len(weights) { panic(errLengthMismatch) } for i := 0; i < r; i++ { v := batch.RawRowView(i) proposal.Rand(v) weights[i] = math.Exp(target.LogProb(v) - proposal.LogProb(v)) } } // ErrRejection is returned when the constant in Rejection is not sufficiently high. var ErrRejection = errors.New("rejection: acceptance ratio above 1") // Rejection is a type for sampling using the rejection sampling algorithm. // // Rejection sampling generates points from the target distribution by using // the proposal distribution. At each step of the algorithm, the proposed point // is accepted with probability // // p = target(x) / (proposal(x) * c) // // where target(x) is the probability of the point according to the target distribution // and proposal(x) is the probability according to the proposal distribution. // The constant c must be chosen such that target(x) < proposal(x) * c for all x. // The expected number of proposed samples is len(samples) * c. // // The number of proposed locations during sampling can be found with a call to // Proposed. If there was an error during sampling, all elements of samples are // set to NaN and the error can be accessed with the Err method. If src != nil, // it will be used to generate random numbers, otherwise rand.Float64 will be used. // // Target may return the true (log of) the probability of the location, or it may return // a value that is proportional to the probability (logprob + constant). This is // useful for cases where the probability distribution is only known up to a normalization // constant. type Rejection struct { C float64 Target distmv.LogProber Proposal distmv.RandLogProber Src rand.Source err error proposed int } // Err returns nil if the most recent call to sample was successful, and returns // ErrRejection if it was not. func (r *Rejection) Err() error { return r.err } // Proposed returns the number of samples proposed during the most recent call to // Sample. func (r *Rejection) Proposed() int { return r.proposed } // Sample generates rows(batch) using the Rejection sampling generation procedure. // Rejection sampling may fail if the constant is insufficiently high, as described // in the type comment for Rejection. If the generation fails, the samples // are set to math.NaN(), and a call to Err will return a non-nil value. func (r *Rejection) Sample(batch *mat.Dense) { r.err = nil r.proposed = 0 proposed, ok := rejection(batch, r.Target, r.Proposal, r.C, r.Src) if !ok { r.err = ErrRejection } r.proposed = proposed } func rejection(batch *mat.Dense, target distmv.LogProber, proposal distmv.RandLogProber, c float64, src rand.Source) (nProposed int, ok bool) { if c < 1 { panic("rejection: acceptance constant must be greater than 1") } f64 := rand.Float64 if src != nil { f64 = rand.New(src).Float64 } r, dim := batch.Dims() v := make([]float64, dim) var idx int for { nProposed++ proposal.Rand(v) qx := proposal.LogProb(v) px := target.LogProb(v) accept := math.Exp(px-qx) / c if accept > 1 { // Invalidate the whole result and return a failure. for i := 0; i < r; i++ { for j := 0; j < dim; j++ { batch.Set(i, j, math.NaN()) } } return nProposed, false } if accept > f64() { batch.SetRow(idx, v) idx++ if idx == r { break } } } return nProposed, true } // IID generates a set of independently and identically distributed samples from // the input distribution. type IID struct { Dist distmv.Rander } // Sample generates a set of identically and independently distributed samples. func (iid IID) Sample(batch *mat.Dense) { r, _ := batch.Dims() for i := 0; i < r; i++ { iid.Dist.Rand(batch.RawRowView(i)) } }