// Copyright ©2013 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package mat import ( "testing" "golang.org/x/exp/rand" "gonum.org/v1/gonum/floats" ) func TestSVD(t *testing.T) { t.Parallel() rnd := rand.New(rand.NewSource(1)) // Hand coded tests for _, test := range []struct { a *Dense u *Dense v *Dense s []float64 }{ { a: NewDense(4, 2, []float64{2, 4, 1, 3, 0, 0, 0, 0}), u: NewDense(4, 2, []float64{ -0.8174155604703632, -0.5760484367663209, -0.5760484367663209, 0.8174155604703633, 0, 0, 0, 0, }), v: NewDense(2, 2, []float64{ -0.4045535848337571, -0.9145142956773044, -0.9145142956773044, 0.4045535848337571, }), s: []float64{5.464985704219041, 0.365966190626258}, }, { // Issue #5. a: NewDense(3, 11, []float64{ 1, 1, 0, 1, 0, 0, 0, 0, 0, 11, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 12, 2, 1, 1, 0, 0, 0, 0, 0, 0, 1, 13, 3, }), u: NewDense(3, 3, []float64{ -0.5224167862273765, 0.7864430360363114, 0.3295270133658976, -0.5739526766688285, -0.03852203026050301, -0.8179818935216693, -0.6306021141833781, -0.6164603833618163, 0.4715056408282468, }), v: NewDense(11, 3, []float64{ -0.08123293141915189, 0.08528085505260324, -0.013165501690885152, -0.05423546426886932, 0.1102707844980355, 0.622210623111631, 0, 0, 0, -0.0245733326078166, 0.510179651760153, 0.25596360803140994, 0, 0, 0, 0, 0, 0, -0.026997467150282436, -0.024989929445430496, -0.6353761248025164, 0, 0, 0, -0.029662131661052707, -0.3999088672621176, 0.3662470150802212, -0.9798839760830571, 0.11328174160898856, -0.047702613241813366, -0.16755466189153964, -0.7395268089170608, 0.08395240366704032, }), s: []float64{21.259500881097434, 1.5415021616856566, 1.2873979074613628}, }, } { var svd SVD ok := svd.Factorize(test.a, SVDThin) if !ok { t.Errorf("SVD failed") } s, u, v := extractSVD(&svd) if !floats.EqualApprox(s, test.s, 1e-10) { t.Errorf("Singular value mismatch. Got %v, want %v.", s, test.s) } if !EqualApprox(u, test.u, 1e-10) { t.Errorf("U mismatch.\nGot:\n%v\nWant:\n%v", Formatted(u), Formatted(test.u)) } if !EqualApprox(v, test.v, 1e-10) { t.Errorf("V mismatch.\nGot:\n%v\nWant:\n%v", Formatted(v), Formatted(test.v)) } m, n := test.a.Dims() sigma := NewDense(min(m, n), min(m, n), nil) for i := 0; i < min(m, n); i++ { sigma.Set(i, i, s[i]) } var ans Dense ans.Product(u, sigma, v.T()) if !EqualApprox(test.a, &ans, 1e-10) { t.Errorf("A reconstruction mismatch.\nGot:\n%v\nWant:\n%v\n", Formatted(&ans), Formatted(test.a)) } for _, kind := range []SVDKind{ SVDThinU, SVDFullU, SVDThinV, SVDFullV, } { var svd SVD svd.Factorize(test.a, kind) if kind&SVDThinU == 0 && kind&SVDFullU == 0 { panicked, message := panics(func() { var dst Dense svd.UTo(&dst) }) if !panicked { t.Error("expected panic with no U matrix requested") continue } want := "svd: u not computed during factorization" if message != want { t.Errorf("unexpected message: got:%q want:%q", message, want) } } if kind&SVDThinV == 0 && kind&SVDFullV == 0 { panicked, message := panics(func() { var dst Dense svd.VTo(&dst) }) if !panicked { t.Error("expected panic with no V matrix requested") continue } want := "svd: v not computed during factorization" if message != want { t.Errorf("unexpected message: got:%q want:%q", message, want) } } } } for _, test := range []struct { m, n int }{ {5, 5}, {5, 3}, {3, 5}, {150, 150}, {200, 150}, {150, 200}, } { m := test.m n := test.n for trial := 0; trial < 10; trial++ { a := NewDense(m, n, nil) for i := range a.mat.Data { a.mat.Data[i] = rnd.NormFloat64() } aCopy := DenseCopyOf(a) // Test Full decomposition. var svd SVD ok := svd.Factorize(a, SVDFull) if !ok { t.Errorf("SVD factorization failed") } if !Equal(a, aCopy) { t.Errorf("A changed during call to SVD with full") } s, u, v := extractSVD(&svd) sigma := NewDense(m, n, nil) for i := 0; i < min(m, n); i++ { sigma.Set(i, i, s[i]) } var ansFull Dense ansFull.Product(u, sigma, v.T()) if !EqualApprox(&ansFull, a, 1e-8) { t.Errorf("Answer mismatch when SVDFull") } // Test Thin decomposition. ok = svd.Factorize(a, SVDThin) if !ok { t.Errorf("SVD factorization failed") } if !Equal(a, aCopy) { t.Errorf("A changed during call to SVD with Thin") } sThin, u, v := extractSVD(&svd) if !floats.EqualApprox(s, sThin, 1e-8) { t.Errorf("Singular value mismatch between Full and Thin decomposition") } sigma = NewDense(min(m, n), min(m, n), nil) for i := 0; i < min(m, n); i++ { sigma.Set(i, i, sThin[i]) } ansFull.Reset() ansFull.Product(u, sigma, v.T()) if !EqualApprox(&ansFull, a, 1e-8) { t.Errorf("Answer mismatch when SVDFull") } // Test None decomposition. ok = svd.Factorize(a, SVDNone) if !ok { t.Errorf("SVD factorization failed") } if !Equal(a, aCopy) { t.Errorf("A changed during call to SVD with none") } sNone := make([]float64, min(m, n)) svd.Values(sNone) if !floats.EqualApprox(s, sNone, 1e-8) { t.Errorf("Singular value mismatch between Full and None decomposition") } } } } func extractSVD(svd *SVD) (s []float64, u, v *Dense) { u = &Dense{} svd.UTo(u) v = &Dense{} svd.VTo(v) return svd.Values(nil), u, v } func TestSVDSolveTo(t *testing.T) { t.Parallel() rnd := rand.New(rand.NewSource(1)) // Hand-coded cases. for i, test := range []struct { a []float64 m, n int b []float64 bc int rcond float64 want []float64 wm, wn int }{ { a: []float64{6}, m: 1, n: 1, b: []float64{3}, bc: 1, want: []float64{0.5}, wm: 1, wn: 1, }, { a: []float64{ 1, 0, 0, 0, 1, 0, 0, 0, 1, }, m: 3, n: 3, b: []float64{ 3, 2, 1, }, bc: 1, want: []float64{ 3, 2, 1, }, wm: 3, wn: 1, }, { a: []float64{ 0.8147, 0.9134, 0.5528, 0.9058, 0.6324, 0.8723, 0.1270, 0.0975, 0.7612, }, m: 3, n: 3, b: []float64{ 0.278, 0.547, 0.958, }, bc: 1, want: []float64{ -0.932687281002860, 0.303963920182067, 1.375216503507109, }, wm: 3, wn: 1, }, { a: []float64{ 0.8147, 0.9134, 0.5528, 0.9058, 0.6324, 0.8723, }, m: 2, n: 3, b: []float64{ 0.278, 0.547, }, bc: 1, want: []float64{ 0.25919787248965376, -0.25560256266441034, 0.5432324059702451, }, wm: 3, wn: 1, }, { a: []float64{ 0.8147, 0.9134, 0.9, 0.9058, 0.6324, 0.9, 0.1270, 0.0975, 0.1, 1.6, 2.8, -3.5, }, m: 4, n: 3, b: []float64{ 0.278, 0.547, -0.958, 1.452, }, bc: 1, want: []float64{ 0.820970340787782, -0.218604626527306, -0.212938815234215, }, wm: 3, wn: 1, }, { a: []float64{ 0.8147, 0.9134, 0.231, -1.65, 0.9058, 0.6324, 0.9, 0.72, 0.1270, 0.0975, 0.1, 1.723, 1.6, 2.8, -3.5, 0.987, 7.231, 9.154, 1.823, 0.9, }, m: 5, n: 4, b: []float64{ 0.278, 8.635, 0.547, 9.125, -0.958, -0.762, 1.452, 1.444, 1.999, -7.234, }, bc: 2, want: []float64{ 1.863006789511373, 44.467887791812750, -1.127270935407224, -34.073794226035126, -0.527926457947330, -8.032133759788573, -0.248621916204897, -2.366366415805275, }, wm: 4, wn: 2, }, { // Test rank-deficient case compared with numpy. // >>> import numpy as np // >>> b = np.array([[-2.3181340317357653], // ... [-0.7146777651358073], // ... [1.8361340927945298], // ... [-0.35699930593018775], // ... [-1.6359508076249094]]) // >>> A = np.array([[-1.7854591879711257, -0.42687285925779594, -0.12730256811265162], // ... [-0.5728984211439724, -0.10093393134001777, -0.1181901192353067], // ... [1.2484316018707418, 0.5646683943038734, -0.48229492403243485], // ... [0.10174927665169475, -0.5805410929482445, 1.3054473231942054], // ... [-1.134174808195733, -0.4732430202414438, 0.3528489486370508]]) // >>> np.linalg.lstsq(A, b, rcond=None) // (array([[ 1.21208422], // [ 0.41541503], // [-0.18320349]]), array([], dtype=float64), 2, array([2.68451480e+00, 1.52593185e+00, 6.82840229e-17])) a: []float64{ -1.7854591879711257, -0.42687285925779594, -0.12730256811265162, -0.5728984211439724, -0.10093393134001777, -0.1181901192353067, 1.2484316018707418, 0.5646683943038734, -0.48229492403243485, 0.10174927665169475, -0.5805410929482445, 1.3054473231942054, -1.134174808195733, -0.4732430202414438, 0.3528489486370508, }, m: 5, n: 3, b: []float64{ -2.3181340317357653, -0.7146777651358073, 1.8361340927945298, -0.35699930593018775, -1.6359508076249094, }, bc: 1, rcond: 1e-15, want: []float64{ 1.2120842180372118, 0.4154150318658529, -0.1832034870198265, }, wm: 3, wn: 1, }, { a: []float64{ 0, 0, 0, 0, }, m: 2, n: 2, b: []float64{ 3, 2, }, bc: 1, }, { a: []float64{ 0, 0, 0, 0, 0, 0, }, m: 3, n: 2, b: []float64{ 3, 2, 1, }, bc: 1, }, { a: []float64{ 0, 0, 0, 0, 0, 0, }, m: 2, n: 3, b: []float64{ 3, 2, }, bc: 1, }, } { a := NewDense(test.m, test.n, test.a) b := NewDense(test.m, test.bc, test.b) var want *Dense if test.want != nil { want = NewDense(test.wm, test.wn, test.want) } var svd SVD ok := svd.Factorize(a, SVDFull) if !ok { t.Errorf("unexpected factorization failure for test %d", i) continue } var x Dense rank := svd.Rank(test.rcond) if rank == 0 { continue } svd.SolveTo(&x, b, rank) if !EqualApprox(&x, want, 1e-12) { t.Errorf("Solve answer mismatch. Want %v, got %v", want, x) } } // Random Cases. for i, test := range []struct { m, n, bc int rcond float64 }{ {m: 5, n: 5, bc: 1}, {m: 5, n: 10, bc: 1}, {m: 10, n: 5, bc: 1}, {m: 5, n: 5, bc: 7}, {m: 5, n: 10, bc: 7}, {m: 10, n: 5, bc: 7}, {m: 5, n: 5, bc: 12}, {m: 5, n: 10, bc: 12}, {m: 10, n: 5, bc: 12}, } { m := test.m n := test.n bc := test.bc a := NewDense(m, n, nil) for i := 0; i < m; i++ { for j := 0; j < n; j++ { a.Set(i, j, rnd.Float64()) } } br := m b := NewDense(br, bc, nil) for i := 0; i < br; i++ { for j := 0; j < bc; j++ { b.Set(i, j, rnd.Float64()) } } var svd SVD ok := svd.Factorize(a, SVDFull) if !ok { t.Errorf("unexpected factorization failure for test %d", i) continue } var x Dense rank := svd.Rank(test.rcond) if rank == 0 { continue } svd.SolveTo(&x, b, rank) // Test that the normal equations hold. // Aᵀ * A * x = Aᵀ * b var tmp, lhs, rhs Dense tmp.Mul(a.T(), a) lhs.Mul(&tmp, &x) rhs.Mul(a.T(), b) if !EqualApprox(&lhs, &rhs, 1e-10) { t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs) } } } func TestSVDSolveVecTo(t *testing.T) { t.Parallel() rnd := rand.New(rand.NewSource(1)) // Hand-coded cases. for i, test := range []struct { a []float64 m, n int b []float64 rcond float64 want []float64 }{ { a: []float64{6}, m: 1, n: 1, b: []float64{3}, want: []float64{0.5}, }, { a: []float64{ 1, 0, 0, 0, 1, 0, 0, 0, 1, }, m: 3, n: 3, b: []float64{3, 2, 1}, want: []float64{3, 2, 1}, }, { a: []float64{ 0.8147, 0.9134, 0.5528, 0.9058, 0.6324, 0.8723, 0.1270, 0.0975, 0.7612, }, m: 3, n: 3, b: []float64{0.278, 0.547, 0.958}, want: []float64{-0.932687281002860, 0.303963920182067, 1.375216503507109}, }, { a: []float64{ 0.8147, 0.9134, 0.5528, 0.9058, 0.6324, 0.8723, }, m: 2, n: 3, b: []float64{0.278, 0.547}, want: []float64{0.25919787248965376, -0.25560256266441034, 0.5432324059702451}, }, { a: []float64{ 0.8147, 0.9134, 0.9, 0.9058, 0.6324, 0.9, 0.1270, 0.0975, 0.1, 1.6, 2.8, -3.5, }, m: 4, n: 3, b: []float64{0.278, 0.547, -0.958, 1.452}, want: []float64{0.820970340787782, -0.218604626527306, -0.212938815234215}, }, { // Test rank-deficient case compared with numpy. // >>> import numpy as np // >>> b = np.array([[-2.3181340317357653], // ... [-0.7146777651358073], // ... [1.8361340927945298], // ... [-0.35699930593018775], // ... [-1.6359508076249094]]) // >>> A = np.array([[-1.7854591879711257, -0.42687285925779594, -0.12730256811265162], // ... [-0.5728984211439724, -0.10093393134001777, -0.1181901192353067], // ... [1.2484316018707418, 0.5646683943038734, -0.48229492403243485], // ... [0.10174927665169475, -0.5805410929482445, 1.3054473231942054], // ... [-1.134174808195733, -0.4732430202414438, 0.3528489486370508]]) // >>> np.linalg.lstsq(A, b, rcond=None) // (array([[ 1.21208422], // [ 0.41541503], // [-0.18320349]]), array([], dtype=float64), 2, array([2.68451480e+00, 1.52593185e+00, 6.82840229e-17])) a: []float64{ -1.7854591879711257, -0.42687285925779594, -0.12730256811265162, -0.5728984211439724, -0.10093393134001777, -0.1181901192353067, 1.2484316018707418, 0.5646683943038734, -0.48229492403243485, 0.10174927665169475, -0.5805410929482445, 1.3054473231942054, -1.134174808195733, -0.4732430202414438, 0.3528489486370508, }, m: 5, n: 3, b: []float64{-2.3181340317357653, -0.7146777651358073, 1.8361340927945298, -0.35699930593018775, -1.6359508076249094}, rcond: 1e-15, want: []float64{1.2120842180372118, 0.4154150318658529, -0.1832034870198265}, }, { a: []float64{ 0, 0, 0, 0, }, m: 2, n: 2, b: []float64{3, 2}, }, { a: []float64{ 0, 0, 0, 0, 0, 0, }, m: 3, n: 2, b: []float64{3, 2, 1}, }, { a: []float64{ 0, 0, 0, 0, 0, 0, }, m: 2, n: 3, b: []float64{3, 2}, }, } { a := NewDense(test.m, test.n, test.a) b := NewVecDense(len(test.b), test.b) var want *VecDense if test.want != nil { want = NewVecDense(len(test.want), test.want) } var svd SVD ok := svd.Factorize(a, SVDFull) if !ok { t.Errorf("unexpected factorization failure for test %d", i) continue } var x VecDense rank := svd.Rank(test.rcond) if rank == 0 { continue } svd.SolveVecTo(&x, b, rank) if !EqualApprox(&x, want, 1e-12) { t.Errorf("Solve answer mismatch. Want %v, got %v", want, x) } } // Random Cases. for i, test := range []struct { m, n int rcond float64 }{ {m: 5, n: 5}, {m: 5, n: 10}, {m: 10, n: 5}, {m: 5, n: 5}, {m: 5, n: 10}, {m: 10, n: 5}, {m: 5, n: 5}, {m: 5, n: 10}, {m: 10, n: 5}, } { m := test.m n := test.n a := NewDense(m, n, nil) for i := 0; i < m; i++ { for j := 0; j < n; j++ { a.Set(i, j, rnd.Float64()) } } br := m b := NewVecDense(br, nil) for i := 0; i < br; i++ { b.SetVec(i, rnd.Float64()) } var svd SVD ok := svd.Factorize(a, SVDFull) if !ok { t.Errorf("unexpected factorization failure for test %d", i) continue } var x VecDense rank := svd.Rank(test.rcond) if rank == 0 { continue } svd.SolveVecTo(&x, b, rank) // Test that the normal equations hold. // Aᵀ * A * x = Aᵀ * b var tmp, lhs, rhs Dense tmp.Mul(a.T(), a) lhs.Mul(&tmp, &x) rhs.Mul(a.T(), b) if !EqualApprox(&lhs, &rhs, 1e-10) { t.Errorf("Normal equations do not hold.\nLHS: %v\n, RHS: %v\n", lhs, rhs) } } }