// Copyright ©2017 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package path_test import ( "fmt" "math" "gonum.org/v1/gonum/graph" "gonum.org/v1/gonum/graph/path" "gonum.org/v1/gonum/graph/simple" ) func ExampleBellmanFordFrom_negativecycles() { // BellmanFordFrom can be used to find a non-exhaustive // set of negative cycles in a graph. // Construct a graph with a negative cycle. edges := []simple.WeightedEdge{ {F: simple.Node('a'), T: simple.Node('b'), W: -2}, {F: simple.Node('a'), T: simple.Node('f'), W: 2}, {F: simple.Node('b'), T: simple.Node('c'), W: 6}, {F: simple.Node('c'), T: simple.Node('a'), W: -5}, {F: simple.Node('d'), T: simple.Node('c'), W: -3}, {F: simple.Node('d'), T: simple.Node('e'), W: 8}, {F: simple.Node('e'), T: simple.Node('b'), W: 9}, {F: simple.Node('e'), T: simple.Node('c'), W: 2}, } g := simple.NewWeightedDirectedGraph(0, math.Inf(1)) for _, e := range edges { g.SetWeightedEdge(e) } // Add a zero-cost path to all nodes from a new node Q. // Since the graph is being mutated, we get a range over // a slice of the graph's nodes rather than using the // graph.Nodes iterator directly. for _, n := range graph.NodesOf(g.Nodes()) { g.SetWeightedEdge(simple.WeightedEdge{F: simple.Node('Q'), T: n}) } // Find the shortest path to each node from Q. pt, ok := path.BellmanFordFrom(simple.Node('Q'), g) if ok { fmt.Println("no negative cycle present") return } for _, id := range []int64{'a', 'b', 'c', 'd', 'e', 'f'} { p, w := pt.To(id) if math.IsInf(w, -1) { fmt.Printf("negative cycle in path to %c path:%c\n", id, p) } } // Output: // negative cycle in path to a path:[a b c a] // negative cycle in path to b path:[b c a b] // negative cycle in path to c path:[c a b c] // negative cycle in path to f path:[a b c a f] } func ExampleFloydWarshall_negativecycles() { // FloydWarshall can be used to find an exhaustive // set of nodes in negative cycles in a graph. // Construct a graph with a negative cycle. edges := []simple.WeightedEdge{ {F: simple.Node('a'), T: simple.Node('f'), W: -1}, {F: simple.Node('b'), T: simple.Node('a'), W: 1}, {F: simple.Node('b'), T: simple.Node('c'), W: -1}, {F: simple.Node('b'), T: simple.Node('d'), W: 1}, {F: simple.Node('c'), T: simple.Node('b'), W: 0}, {F: simple.Node('e'), T: simple.Node('a'), W: 1}, {F: simple.Node('f'), T: simple.Node('e'), W: -1}, } g := simple.NewWeightedDirectedGraph(0, math.Inf(1)) for _, e := range edges { g.SetWeightedEdge(e) } // Find the shortest path to each node from Q. pt, ok := path.FloydWarshall(g) if ok { fmt.Println("no negative cycle present") return } ids := []int64{'a', 'b', 'c', 'd', 'e', 'f'} for _, id := range ids { if math.IsInf(pt.Weight(id, id), -1) { fmt.Printf("%c is in a negative cycle\n", id) } } for _, uid := range ids { for _, vid := range ids { _, w, unique := pt.Between(uid, vid) if math.IsInf(w, -1) { fmt.Printf("negative cycle in path from %c to %c unique=%t\n", uid, vid, unique) } } } // Output: // a is in a negative cycle // b is in a negative cycle // c is in a negative cycle // e is in a negative cycle // f is in a negative cycle // negative cycle in path from a to a unique=false // negative cycle in path from a to e unique=false // negative cycle in path from a to f unique=false // negative cycle in path from b to a unique=false // negative cycle in path from b to b unique=false // negative cycle in path from b to c unique=false // negative cycle in path from b to d unique=false // negative cycle in path from b to e unique=false // negative cycle in path from b to f unique=false // negative cycle in path from c to a unique=false // negative cycle in path from c to b unique=false // negative cycle in path from c to c unique=false // negative cycle in path from c to d unique=false // negative cycle in path from c to e unique=false // negative cycle in path from c to f unique=false // negative cycle in path from e to a unique=false // negative cycle in path from e to e unique=false // negative cycle in path from e to f unique=false // negative cycle in path from f to a unique=false // negative cycle in path from f to e unique=false // negative cycle in path from f to f unique=false }