// Copyright ©2014 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. package multi import ( "fmt" "gonum.org/v1/gonum/graph" "gonum.org/v1/gonum/graph/iterator" "gonum.org/v1/gonum/graph/set/uid" ) var ( ug *UndirectedGraph _ graph.Graph = ug _ graph.Undirected = ug _ graph.Multigraph = ug _ graph.UndirectedMultigraph = ug _ graph.NodeAdder = ug _ graph.NodeRemover = ug _ graph.LineAdder = ug _ graph.LineRemover = ug ) // UndirectedGraph implements a generalized undirected graph. type UndirectedGraph struct { nodes map[int64]graph.Node lines map[int64]map[int64]map[int64]graph.Line nodeIDs *uid.Set lineIDs map[int64]map[int64]*uid.Set } // NewUndirectedGraph returns an UndirectedGraph. func NewUndirectedGraph() *UndirectedGraph { return &UndirectedGraph{ nodes: make(map[int64]graph.Node), lines: make(map[int64]map[int64]map[int64]graph.Line), nodeIDs: uid.NewSet(), lineIDs: make(map[int64]map[int64]*uid.Set), } } // AddNode adds n to the graph. It panics if the added node ID matches an existing node ID. func (g *UndirectedGraph) AddNode(n graph.Node) { if _, exists := g.nodes[n.ID()]; exists { panic(fmt.Sprintf("simple: node ID collision: %d", n.ID())) } g.nodes[n.ID()] = n g.nodeIDs.Use(n.ID()) } // Edge returns the edge from u to v if such an edge exists and nil otherwise. // The node v must be directly reachable from u as defined by the From method. // The returned graph.Edge is a multi.Edge if an edge exists. func (g *UndirectedGraph) Edge(uid, vid int64) graph.Edge { l := g.LinesBetween(uid, vid) if l == graph.Empty { return nil } return Edge{F: g.Node(uid), T: g.Node(vid), Lines: l} } // EdgeBetween returns the edge between nodes x and y. func (g *UndirectedGraph) EdgeBetween(xid, yid int64) graph.Edge { return g.Edge(xid, yid) } // Edges returns all the edges in the graph. Each edge in the returned slice // is a multi.Edge. // // The returned graph.Edges is only valid until the next mutation of // the receiver. func (g *UndirectedGraph) Edges() graph.Edges { if len(g.lines) == 0 { return graph.Empty } var edges []graph.Edge for xid, u := range g.lines { for yid, lines := range u { if yid < xid { // Do not consider lines when the To node ID is // before the From node ID. Both orientations // are stored. continue } if len(lines) == 0 { continue } edges = append(edges, Edge{ F: g.Node(xid), T: g.Node(yid), Lines: iterator.NewLines(lines), }) } } if len(edges) == 0 { return graph.Empty } return iterator.NewOrderedEdges(edges) } // From returns all nodes in g that can be reached directly from n. // // The returned graph.Nodes is only valid until the next mutation of // the receiver. func (g *UndirectedGraph) From(id int64) graph.Nodes { if len(g.lines[id]) == 0 { return graph.Empty } return iterator.NewNodesByLines(g.nodes, g.lines[id]) } // HasEdgeBetween returns whether an edge exists between nodes x and y. func (g *UndirectedGraph) HasEdgeBetween(xid, yid int64) bool { _, ok := g.lines[xid][yid] return ok } // Lines returns the lines from u to v if such an edge exists and nil otherwise. // The node v must be directly reachable from u as defined by the From method. func (g *UndirectedGraph) Lines(uid, vid int64) graph.Lines { return g.LinesBetween(uid, vid) } // LinesBetween returns the lines between nodes x and y. func (g *UndirectedGraph) LinesBetween(xid, yid int64) graph.Lines { if !g.HasEdgeBetween(xid, yid) { return graph.Empty } var lines []graph.Line for _, l := range g.lines[xid][yid] { if l.From().ID() != xid { l = l.ReversedLine() } lines = append(lines, l) } return iterator.NewOrderedLines(lines) } // NewLine returns a new Line from the source to the destination node. // The returned Line will have a graph-unique ID. // The Line's ID does not become valid in g until the Line is added to g. func (g *UndirectedGraph) NewLine(from, to graph.Node) graph.Line { xid := from.ID() yid := to.ID() if yid < xid { xid, yid = yid, xid } var lineID int64 switch { case g.lineIDs[xid] == nil: uids := uid.NewSet() lineID = uids.NewID() g.lineIDs[xid] = map[int64]*uid.Set{yid: uids} case g.lineIDs[xid][yid] == nil: uids := uid.NewSet() lineID = uids.NewID() g.lineIDs[xid][yid] = uids default: lineID = g.lineIDs[xid][yid].NewID() } return Line{F: from, T: to, UID: lineID} } // NewNode returns a new unique Node to be added to g. The Node's ID does // not become valid in g until the Node is added to g. func (g *UndirectedGraph) NewNode() graph.Node { if len(g.nodes) == 0 { return Node(0) } if int64(len(g.nodes)) == uid.Max { panic("simple: cannot allocate node: no slot") } return Node(g.nodeIDs.NewID()) } // Node returns the node with the given ID if it exists in the graph, // and nil otherwise. func (g *UndirectedGraph) Node(id int64) graph.Node { return g.nodes[id] } // Nodes returns all the nodes in the graph. // // The returned graph.Nodes is only valid until the next mutation of // the receiver. func (g *UndirectedGraph) Nodes() graph.Nodes { if len(g.nodes) == 0 { return graph.Empty } return iterator.NewNodes(g.nodes) } // NodeWithID returns a Node with the given ID if possible. If a graph.Node // is returned that is not already in the graph NodeWithID will return true // for new and the graph.Node must be added to the graph before use. func (g *UndirectedGraph) NodeWithID(id int64) (n graph.Node, new bool) { n, ok := g.nodes[id] if ok { return n, false } return Node(id), true } // RemoveLine removes the line with the given end point and line Ids from the graph, leaving // the terminal nodes. If the line does not exist it is a no-op. func (g *UndirectedGraph) RemoveLine(fid, tid, id int64) { if _, ok := g.nodes[fid]; !ok { return } if _, ok := g.nodes[tid]; !ok { return } delete(g.lines[fid][tid], id) if len(g.lines[fid][tid]) == 0 { delete(g.lines[fid], tid) } delete(g.lines[tid][fid], id) if len(g.lines[tid][fid]) == 0 { delete(g.lines[tid], fid) } xid := fid yid := tid if yid < xid { xid, yid = yid, xid } g.lineIDs[xid][yid].Release(id) } // RemoveNode removes the node with the given ID from the graph, as well as any edges attached // to it. If the node is not in the graph it is a no-op. func (g *UndirectedGraph) RemoveNode(id int64) { if _, ok := g.nodes[id]; !ok { return } delete(g.nodes, id) for from := range g.lines[id] { delete(g.lines[from], id) } delete(g.lines, id) g.nodeIDs.Release(id) } // SetLine adds l, a line from one node to another. If the nodes do not exist, they are added // and are set to the nodes of the line otherwise. func (g *UndirectedGraph) SetLine(l graph.Line) { var ( from = l.From() fid = from.ID() to = l.To() tid = to.ID() lid = l.ID() ) if _, ok := g.nodes[fid]; !ok { g.AddNode(from) } else { g.nodes[fid] = from } if _, ok := g.nodes[tid]; !ok { g.AddNode(to) } else { g.nodes[tid] = to } switch { case g.lines[fid] == nil: g.lines[fid] = map[int64]map[int64]graph.Line{tid: {lid: l}} case g.lines[fid][tid] == nil: g.lines[fid][tid] = map[int64]graph.Line{lid: l} default: g.lines[fid][tid][lid] = l } switch { case g.lines[tid] == nil: g.lines[tid] = map[int64]map[int64]graph.Line{fid: {lid: l}} case g.lines[tid][fid] == nil: g.lines[tid][fid] = map[int64]graph.Line{lid: l} default: g.lines[tid][fid][lid] = l } xid := fid yid := tid if yid < xid { xid, yid = yid, xid } switch { case g.lineIDs[xid] == nil: uids := uid.NewSet() g.lineIDs[xid] = map[int64]*uid.Set{yid: uids} case g.lineIDs[xid][yid] == nil: uids := uid.NewSet() g.lineIDs[xid][yid] = uids } g.lineIDs[xid][yid].Use(lid) }