// Copyright ©2018 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This is a translation of the FFTPACK rfft functions by // Paul N Swarztrauber, placed in the public domain at // http://www.netlib.org/fftpack/. package fftpack import ( "math" "math/cmplx" ) // Rffti initializes the array work which is used in both Rfftf // and Rfftb. The prime factorization of n together with a // tabulation of the trigonometric functions are computed and // stored in work. // // Input parameter: // // n The length of the sequence to be transformed. // // Output parameters: // // work A work array which must be dimensioned at least 2*n. // The same work array can be used for both Rfftf and Rfftb // as long as n remains unchanged. different work arrays // are required for different values of n. The contents of // work must not be changed between calls of Rfftf or Rfftb. // // ifac A work array containing the factors of n. ifac must have // length of at least 15. func Rffti(n int, work []float64, ifac []int) { if len(work) < 2*n { panic("fourier: short work") } if len(ifac) < 15 { panic("fourier: short ifac") } if n == 1 { return } rffti1(n, work[n:2*n], ifac[:15]) } func rffti1(n int, wa []float64, ifac []int) { ntryh := [4]int{4, 2, 3, 5} nl := n nf := 0 outer: for j, ntry := 0, 0; ; j++ { if j < 4 { ntry = ntryh[j] } else { ntry += 2 } for { if nl%ntry != 0 { continue outer } ifac[nf+2] = ntry nl /= ntry nf++ if ntry == 2 && nf != 1 { for i := 1; i < nf; i++ { ib := nf - i + 1 ifac[ib+1] = ifac[ib] } ifac[2] = 2 } if nl == 1 { break outer } } } ifac[0] = n ifac[1] = nf if nf == 1 { return } argh := 2 * math.Pi / float64(n) is := 0 l1 := 1 for k1 := 0; k1 < nf-1; k1++ { ip := ifac[k1+2] ld := 0 l2 := l1 * ip ido := n / l2 for j := 0; j < ip-1; j++ { ld += l1 i := is fi := 0.0 argld := float64(ld) * argh for ii := 2; ii < ido; ii += 2 { fi++ arg := fi * argld wa[i] = math.Cos(arg) wa[i+1] = math.Sin(arg) i += 2 } is += ido } l1 = l2 } } // Rfftf computes the Fourier coefficients of a real perodic sequence // (Fourier analysis). The transform is defined below at output // parameter r. // // Input parameters: // // n The length of the array r to be transformed. The method // is most efficient when n is a product of small primes. // n may change so long as different work arrays are provided. // // r A real array of length n which contains the sequence // to be transformed. // // work a work array which must be dimensioned at least 2*n. // in the program that calls Rfftf. the work array must be // initialized by calling subroutine rffti(n,work,ifac) and a // different work array must be used for each different // value of n. This initialization does not have to be // repeated so long as n remains unchanged. Thus subsequent // transforms can be obtained faster than the first. // The same work array can be used by Rfftf and Rfftb. // // ifac A work array containing the factors of n. ifac must have // length of at least 15. // // Output parameters: // // r r[0] = the sum from i=0 to i=n-1 of r[i] // // if n is even set l=n/2, if n is odd set l = (n+1)/2 // then for k = 1, ..., l-1 // r[2*k-1] = the sum from i = 0 to i = n-1 of // r[i]*cos(k*i*2*pi/n) // r[2*k] = the sum from i = 0 to i = n-1 of // -r[i]*sin(k*i*2*pi/n) // // if n is even // r[n-1] = the sum from i = 0 to i = n-1 of // (-1)^i*r[i] // // This transform is unnormalized since a call of Rfftf // followed by a call of Rfftb will multiply the input // sequence by n. // // work contains results which must not be destroyed between // calls of Rfftf or Rfftb. // ifac contains results which must not be destroyed between // calls of Rfftf or Rfftb. func Rfftf(n int, r, work []float64, ifac []int) { if len(r) < n { panic("fourier: short sequence") } if len(work) < 2*n { panic("fourier: short work") } if len(ifac) < 15 { panic("fourier: short ifac") } if n == 1 { return } rfftf1(n, r[:n], work[:n], work[n:2*n], ifac[:15]) } func rfftf1(n int, c, ch, wa []float64, ifac []int) { nf := ifac[1] na := true l2 := n iw := n - 1 for k1 := 1; k1 <= nf; k1++ { kh := nf - k1 ip := ifac[kh+2] l1 := l2 / ip ido := n / l2 idl1 := ido * l1 iw -= (ip - 1) * ido na = !na switch ip { case 4: ix2 := iw + ido ix3 := ix2 + ido if na { radf4(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:]) } else { radf4(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:]) } case 2: if na { radf2(ido, l1, ch, c, wa[iw:]) } else { radf2(ido, l1, c, ch, wa[iw:]) } case 3: ix2 := iw + ido if na { radf3(ido, l1, ch, c, wa[iw:], wa[ix2:]) } else { radf3(ido, l1, c, ch, wa[iw:], wa[ix2:]) } case 5: ix2 := iw + ido ix3 := ix2 + ido ix4 := ix3 + ido if na { radf5(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:]) } else { radf5(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:]) } default: if ido == 1 { na = !na } if na { radfg(ido, ip, l1, idl1, ch, ch, ch, c, c, wa[iw:]) na = false } else { radfg(ido, ip, l1, idl1, c, c, c, ch, ch, wa[iw:]) na = true } } l2 = l1 } if na { return } for i := 0; i < n; i++ { c[i] = ch[i] } } func radf2(ido, l1 int, cc, ch, wa1 []float64) { cc3 := newThreeArray(ido, l1, 2, cc) ch3 := newThreeArray(ido, 2, l1, ch) for k := 0; k < l1; k++ { ch3.set(0, 0, k, cc3.at(0, k, 0)+cc3.at(0, k, 1)) ch3.set(ido-1, 1, k, cc3.at(0, k, 0)-cc3.at(0, k, 1)) } if ido < 2 { return } if ido > 2 { idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) t2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1) ch3.setCmplx(i-1, 0, k, cc3.atCmplx(i-1, k, 0)+t2) // This is left as conj(z1)-conj(z2) rather than conj(z1-z2) // to retain current signed zero behaviour. ch3.setCmplx(ic-1, 1, k, cmplx.Conj(cc3.atCmplx(i-1, k, 0))-cmplx.Conj(t2)) } } if ido%2 == 1 { return } } for k := 0; k < l1; k++ { ch3.set(0, 1, k, -cc3.at(ido-1, k, 1)) ch3.set(ido-1, 0, k, cc3.at(ido-1, k, 0)) } } func radf3(ido, l1 int, cc, ch, wa1, wa2 []float64) { const ( taur = -0.5 taui = 0.866025403784439 // sqrt(3)/2 ) cc3 := newThreeArray(ido, l1, 3, cc) ch3 := newThreeArray(ido, 3, l1, ch) for k := 0; k < l1; k++ { cr2 := cc3.at(0, k, 1) + cc3.at(0, k, 2) ch3.set(0, 0, k, cc3.at(0, k, 0)+cr2) ch3.set(0, 2, k, taui*(cc3.at(0, k, 2)-cc3.at(0, k, 1))) ch3.set(ido-1, 1, k, cc3.at(0, k, 0)+taur*cr2) } if ido < 2 { return } idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) d2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1) d3 := complex(wa2[i-2], -wa2[i-1]) * cc3.atCmplx(i-1, k, 2) c2 := d2 + d3 ch3.setCmplx(i-1, 0, k, cc3.atCmplx(i-1, k, 0)+c2) t2 := cc3.atCmplx(i-1, k, 0) + scale(taur, c2) t3 := scale(taui, cmplx.Conj(swap(d2-d3))) ch3.setCmplx(i-1, 2, k, t2+t3) ch3.setCmplx(ic-1, 1, k, cmplx.Conj(t2-t3)) } } } func radf4(ido, l1 int, cc, ch, wa1, wa2, wa3 []float64) { const hsqt2 = math.Sqrt2 / 2 cc3 := newThreeArray(ido, l1, 4, cc) ch3 := newThreeArray(ido, 4, l1, ch) for k := 0; k < l1; k++ { tr1 := cc3.at(0, k, 1) + cc3.at(0, k, 3) tr2 := cc3.at(0, k, 0) + cc3.at(0, k, 2) ch3.set(0, 0, k, tr1+tr2) ch3.set(ido-1, 3, k, tr2-tr1) ch3.set(ido-1, 1, k, cc3.at(0, k, 0)-cc3.at(0, k, 2)) ch3.set(0, 2, k, cc3.at(0, k, 3)-cc3.at(0, k, 1)) } if ido < 2 { return } if ido > 2 { idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) c2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1) c3 := complex(wa2[i-2], -wa2[i-1]) * cc3.atCmplx(i-1, k, 2) c4 := complex(wa3[i-2], -wa3[i-1]) * cc3.atCmplx(i-1, k, 3) t1 := c2 + c4 t2 := cc3.atCmplx(i-1, k, 0) + c3 t3 := cc3.atCmplx(i-1, k, 0) - c3 t4 := cmplx.Conj(c4 - c2) ch3.setCmplx(i-1, 0, k, t1+t2) ch3.setCmplx(ic-1, 3, k, cmplx.Conj(t2-t1)) ch3.setCmplx(i-1, 2, k, swap(t4)+t3) ch3.setCmplx(ic-1, 1, k, cmplx.Conj(t3-swap(t4))) } } if ido%2 == 1 { return } } for k := 0; k < l1; k++ { ti1 := -hsqt2 * (cc3.at(ido-1, k, 1) + cc3.at(ido-1, k, 3)) tr1 := hsqt2 * (cc3.at(ido-1, k, 1) - cc3.at(ido-1, k, 3)) ch3.set(ido-1, 0, k, tr1+cc3.at(ido-1, k, 0)) ch3.set(ido-1, 2, k, cc3.at(ido-1, k, 0)-tr1) ch3.set(0, 1, k, ti1-cc3.at(ido-1, k, 2)) ch3.set(0, 3, k, ti1+cc3.at(ido-1, k, 2)) } } func radf5(ido, l1 int, cc, ch, wa1, wa2, wa3, wa4 []float64) { const ( tr11 = 0.309016994374947 ti11 = 0.951056516295154 tr12 = -0.809016994374947 ti12 = 0.587785252292473 ) cc3 := newThreeArray(ido, l1, 5, cc) ch3 := newThreeArray(ido, 5, l1, ch) for k := 0; k < l1; k++ { cr2 := cc3.at(0, k, 4) + cc3.at(0, k, 1) cr3 := cc3.at(0, k, 3) + cc3.at(0, k, 2) ci4 := cc3.at(0, k, 3) - cc3.at(0, k, 2) ci5 := cc3.at(0, k, 4) - cc3.at(0, k, 1) ch3.set(0, 0, k, cc3.at(0, k, 0)+cr2+cr3) ch3.set(ido-1, 1, k, cc3.at(0, k, 0)+tr11*cr2+tr12*cr3) ch3.set(0, 2, k, ti11*ci5+ti12*ci4) ch3.set(ido-1, 3, k, cc3.at(0, k, 0)+tr12*cr2+tr11*cr3) ch3.set(0, 4, k, ti12*ci5-ti11*ci4) } if ido < 2 { return } idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) d2 := complex(wa1[i-2], -wa1[i-1]) * cc3.atCmplx(i-1, k, 1) d3 := complex(wa2[i-2], -wa2[i-1]) * cc3.atCmplx(i-1, k, 2) d4 := complex(wa3[i-2], -wa3[i-1]) * cc3.atCmplx(i-1, k, 3) d5 := complex(wa4[i-2], -wa4[i-1]) * cc3.atCmplx(i-1, k, 4) c2 := d2 + d5 c3 := d3 + d4 c4 := cmplx.Conj(swap(d3 - d4)) c5 := cmplx.Conj(swap(d2 - d5)) ch3.setCmplx(i-1, 0, k, cc3.atCmplx(i-1, k, 0)+c2+c3) t2 := cc3.atCmplx(i-1, k, 0) + scale(tr11, c2) + scale(tr12, c3) t3 := cc3.atCmplx(i-1, k, 0) + scale(tr12, c2) + scale(tr11, c3) t4 := scale(ti12, c5) - scale(ti11, c4) t5 := scale(ti11, c5) + scale(ti12, c4) ch3.setCmplx(ic-1, 1, k, cmplx.Conj(t2-t5)) ch3.setCmplx(i-1, 2, k, t2+t5) ch3.setCmplx(ic-1, 3, k, cmplx.Conj(t3-t4)) ch3.setCmplx(i-1, 4, k, t3+t4) } } } func radfg(ido, ip, l1, idl1 int, cc, c1, c2, ch, ch2, wa []float64) { cc3 := newThreeArray(ido, ip, l1, cc) c13 := newThreeArray(ido, l1, ip, c1) ch3 := newThreeArray(ido, l1, ip, ch) c2m := newTwoArray(idl1, ip, c2) ch2m := newTwoArray(idl1, ip, ch2) arg := 2 * math.Pi / float64(ip) dcp := math.Cos(arg) dsp := math.Sin(arg) ipph := (ip + 1) / 2 nbd := (ido - 1) / 2 if ido == 1 { for ik := 0; ik < idl1; ik++ { c2m.set(ik, 0, ch2m.at(ik, 0)) } } else { for ik := 0; ik < idl1; ik++ { ch2m.set(ik, 0, c2m.at(ik, 0)) } for j := 1; j < ip; j++ { for k := 0; k < l1; k++ { ch3.set(0, k, j, c13.at(0, k, j)) } } is := -ido - 1 if nbd > l1 { for j := 1; j < ip; j++ { is += ido for k := 0; k < l1; k++ { idij := is for i := 2; i < ido; i += 2 { idij += 2 ch3.setCmplx(i-1, k, j, complex(wa[idij-1], -wa[idij])*c13.atCmplx(i-1, k, j)) } } } } else { for j := 1; j < ip; j++ { is += ido idij := is for i := 2; i < ido; i += 2 { idij += 2 for k := 0; k < l1; k++ { ch3.setCmplx(i-1, k, j, complex(wa[idij-1], -wa[idij])*c13.atCmplx(i-1, k, j)) } } } } if nbd < l1 { for j := 1; j < ipph; j++ { jc := ip - j for i := 2; i < ido; i += 2 { for k := 0; k < l1; k++ { c13.setCmplx(i-1, k, j, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc)) c13.setCmplx(i-1, k, jc, cmplx.Conj(swap(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc)))) } } } } else { for j := 1; j < ipph; j++ { jc := ip - j for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { c13.setCmplx(i-1, k, j, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc)) c13.setCmplx(i-1, k, jc, cmplx.Conj(swap(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc)))) } } } } } for j := 1; j < ipph; j++ { jc := ip - j for k := 0; k < l1; k++ { c13.set(0, k, j, ch3.at(0, k, j)+ch3.at(0, k, jc)) c13.set(0, k, jc, ch3.at(0, k, jc)-ch3.at(0, k, j)) } } ar1 := 1.0 ai1 := 0.0 for l := 1; l < ipph; l++ { lc := ip - l ar1h := dcp*ar1 - dsp*ai1 ai1 = dcp*ai1 + dsp*ar1 ar1 = ar1h for ik := 0; ik < idl1; ik++ { ch2m.set(ik, l, c2m.at(ik, 0)+ar1*c2m.at(ik, 1)) ch2m.set(ik, lc, ai1*c2m.at(ik, ip-1)) } dc2 := ar1 ds2 := ai1 ar2 := ar1 ai2 := ai1 for j := 2; j < ipph; j++ { jc := ip - j ar2h := dc2*ar2 - ds2*ai2 ai2 = dc2*ai2 + ds2*ar2 ar2 = ar2h for ik := 0; ik < idl1; ik++ { ch2m.add(ik, l, ar2*c2m.at(ik, j)) ch2m.add(ik, lc, ai2*c2m.at(ik, jc)) } } } for j := 1; j < ipph; j++ { for ik := 0; ik < idl1; ik++ { ch2m.add(ik, 0, c2m.at(ik, j)) } } if ido < l1 { for i := 0; i < ido; i++ { for k := 0; k < l1; k++ { cc3.set(i, 0, k, ch3.at(i, k, 0)) } } } else { for k := 0; k < l1; k++ { for i := 0; i < ido; i++ { cc3.set(i, 0, k, ch3.at(i, k, 0)) } } } for j := 1; j < ipph; j++ { jc := ip - j j2 := 2 * j for k := 0; k < l1; k++ { cc3.set(ido-1, j2-1, k, ch3.at(0, k, j)) cc3.set(0, j2, k, ch3.at(0, k, jc)) } } if ido == 1 { return } if nbd < l1 { for j := 1; j < ipph; j++ { jc := ip - j j2 := 2 * j for i := 2; i < ido; i += 2 { ic := ido - i for k := 0; k < l1; k++ { cc3.setCmplx(i-1, j2, k, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc)) cc3.setCmplx(ic-1, j2-1, k, cmplx.Conj(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc))) } } } return } for j := 1; j < ipph; j++ { jc := ip - j j2 := 2 * j for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := ido - i cc3.setCmplx(i-1, j2, k, ch3.atCmplx(i-1, k, j)+ch3.atCmplx(i-1, k, jc)) cc3.setCmplx(ic-1, j2-1, k, cmplx.Conj(ch3.atCmplx(i-1, k, j)-ch3.atCmplx(i-1, k, jc))) } } } } // Rfftb computes the real perodic sequence from its Fourier // coefficients (Fourier synthesis). The transform is defined // below at output parameter r. // // Input parameters // // n The length of the array r to be transformed. The method // is most efficient when n is a product of small primes. // n may change so long as different work arrays are provided. // // r A real array of length n which contains the sequence // to be transformed. // // work A work array which must be dimensioned at least 2*n. // in the program that calls Rfftb. The work array must be // initialized by calling subroutine rffti(n,work,ifac) and a // different work array must be used for each different // value of n. This initialization does not have to be // repeated so long as n remains unchanged thus subsequent // transforms can be obtained faster than the first. // The same work array can be used by Rfftf and Rfftb. // // ifac A work array containing the factors of n. ifac must have // length of at least 15. // // output parameters // // r for n even and for i = 0, ..., n // r[i] = r[0]+(-1)^i*r[n-1] // plus the sum from k=1 to k=n/2-1 of // 2*r(2*k-1)*cos(k*i*2*pi/n) // -2*r(2*k)*sin(k*i*2*pi/n) // // for n odd and for i = 0, ..., n-1 // r[i] = r[0] plus the sum from k=1 to k=(n-1)/2 of // 2*r(2*k-1)*cos(k*i*2*pi/n) // -2*r(2*k)*sin(k*i*2*pi/n) // // This transform is unnormalized since a call of Rfftf // followed by a call of Rfftb will multiply the input // sequence by n. // // work Contains results which must not be destroyed between // calls of Rfftf or Rfftb. // ifac Contains results which must not be destroyed between // calls of Rfftf or Rfftb. func Rfftb(n int, r, work []float64, ifac []int) { if len(r) < n { panic("fourier: short sequence") } if len(work) < 2*n { panic("fourier: short work") } if len(ifac) < 15 { panic("fourier: short ifac") } if n == 1 { return } rfftb1(n, r[:n], work[:n], work[n:2*n], ifac[:15]) } func rfftb1(n int, c, ch, wa []float64, ifac []int) { nf := ifac[1] na := false l1 := 1 iw := 0 for k1 := 1; k1 <= nf; k1++ { ip := ifac[k1+1] l2 := ip * l1 ido := n / l2 idl1 := ido * l1 switch ip { case 4: ix2 := iw + ido ix3 := ix2 + ido if na { radb4(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:]) } else { radb4(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:]) } na = !na case 2: if na { radb2(ido, l1, ch, c, wa[iw:]) } else { radb2(ido, l1, c, ch, wa[iw:]) } na = !na case 3: ix2 := iw + ido if na { radb3(ido, l1, ch, c, wa[iw:], wa[ix2:]) } else { radb3(ido, l1, c, ch, wa[iw:], wa[ix2:]) } na = !na case 5: ix2 := iw + ido ix3 := ix2 + ido ix4 := ix3 + ido if na { radb5(ido, l1, ch, c, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:]) } else { radb5(ido, l1, c, ch, wa[iw:], wa[ix2:], wa[ix3:], wa[ix4:]) } na = !na default: if na { radbg(ido, ip, l1, idl1, ch, ch, ch, c, c, wa[iw:]) } else { radbg(ido, ip, l1, idl1, c, c, c, ch, ch, wa[iw:]) } if ido == 1 { na = !na } } l1 = l2 iw += (ip - 1) * ido } if na { for i := 0; i < n; i++ { c[i] = ch[i] } } } func radb2(ido, l1 int, cc, ch, wa1 []float64) { cc3 := newThreeArray(ido, 2, l1, cc) ch3 := newThreeArray(ido, l1, 2, ch) for k := 0; k < l1; k++ { ch3.set(0, k, 0, cc3.at(0, 0, k)+cc3.at(ido-1, 1, k)) ch3.set(0, k, 1, cc3.at(0, 0, k)-cc3.at(ido-1, 1, k)) } if ido < 2 { return } if ido > 2 { idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) ch3.setCmplx(i-1, k, 0, cc3.atCmplx(i-1, 0, k)+cmplx.Conj(cc3.atCmplx(ic-1, 1, k))) t2 := cc3.atCmplx(i-1, 0, k) - cmplx.Conj(cc3.atCmplx(ic-1, 1, k)) ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*t2) } } if ido%2 == 1 { return } } for k := 0; k < l1; k++ { ch3.set(ido-1, k, 0, 2*cc3.at(ido-1, 0, k)) ch3.set(ido-1, k, 1, -2*cc3.at(0, 1, k)) } } func radb3(ido, l1 int, cc, ch, wa1, wa2 []float64) { const ( taur = -0.5 taui = 0.866025403784439 // sqrt(3)/2 ) cc3 := newThreeArray(ido, 3, l1, cc) ch3 := newThreeArray(ido, l1, 3, ch) for k := 0; k < l1; k++ { tr2 := cc3.at(ido-1, 1, k) + cc3.at(ido-1, 1, k) cr2 := cc3.at(0, 0, k) + taur*tr2 ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2) ci3 := taui * (cc3.at(0, 2, k) + cc3.at(0, 2, k)) ch3.set(0, k, 1, cr2-ci3) ch3.set(0, k, 2, cr2+ci3) } if ido == 1 { return } idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) t2 := cc3.atCmplx(i-1, 2, k) + cmplx.Conj(cc3.atCmplx(ic-1, 1, k)) c2 := cc3.atCmplx(i-1, 0, k) + scale(taur, t2) ch3.setCmplx(i-1, k, 0, cc3.atCmplx(i-1, 0, k)+t2) c3 := scale(taui, cc3.atCmplx(i-1, 2, k)-cmplx.Conj(cc3.atCmplx(ic-1, 1, k))) d2 := c2 - cmplx.Conj(swap(c3)) d3 := c2 + cmplx.Conj(swap(c3)) ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*d2) ch3.setCmplx(i-1, k, 2, complex(wa2[i-2], wa2[i-1])*d3) } } } func radb4(ido, l1 int, cc, ch, wa1, wa2, wa3 []float64) { cc3 := newThreeArray(ido, 4, l1, cc) ch3 := newThreeArray(ido, l1, 4, ch) for k := 0; k < l1; k++ { tr1 := cc3.at(0, 0, k) - cc3.at(ido-1, 3, k) tr2 := cc3.at(0, 0, k) + cc3.at(ido-1, 3, k) tr3 := cc3.at(ido-1, 1, k) + cc3.at(ido-1, 1, k) tr4 := cc3.at(0, 2, k) + cc3.at(0, 2, k) ch3.set(0, k, 0, tr2+tr3) ch3.set(0, k, 1, tr1-tr4) ch3.set(0, k, 2, tr2-tr3) ch3.set(0, k, 3, tr1+tr4) } if ido < 2 { return } if ido > 2 { idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) t1 := cc3.atCmplx(i-1, 0, k) - cmplx.Conj(cc3.atCmplx(ic-1, 3, k)) t2 := cc3.atCmplx(i-1, 0, k) + cmplx.Conj(cc3.atCmplx(ic-1, 3, k)) t3 := cc3.atCmplx(i-1, 2, k) + cmplx.Conj(cc3.atCmplx(ic-1, 1, k)) t4 := swap(cc3.atCmplx(i-1, 2, k) - cmplx.Conj(cc3.atCmplx(ic-1, 1, k))) ch3.setCmplx(i-1, k, 0, t2+t3) c2 := t1 - cmplx.Conj(t4) c3 := t2 - t3 c4 := t1 + cmplx.Conj(t4) ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*c2) ch3.setCmplx(i-1, k, 2, complex(wa2[i-2], wa2[i-1])*c3) ch3.setCmplx(i-1, k, 3, complex(wa3[i-2], wa3[i-1])*c4) } } if ido%2 == 1 { return } } for k := 0; k < l1; k++ { tr1 := cc3.at(ido-1, 0, k) - cc3.at(ido-1, 2, k) ti1 := cc3.at(0, 1, k) + cc3.at(0, 3, k) tr2 := cc3.at(ido-1, 0, k) + cc3.at(ido-1, 2, k) ti2 := cc3.at(0, 3, k) - cc3.at(0, 1, k) ch3.set(ido-1, k, 0, tr2+tr2) ch3.set(ido-1, k, 1, math.Sqrt2*(tr1-ti1)) ch3.set(ido-1, k, 2, ti2+ti2) ch3.set(ido-1, k, 3, -math.Sqrt2*(tr1+ti1)) } } func radb5(ido, l1 int, cc, ch, wa1, wa2, wa3, wa4 []float64) { const ( tr11 = 0.309016994374947 ti11 = 0.951056516295154 tr12 = -0.809016994374947 ti12 = 0.587785252292473 ) cc3 := newThreeArray(ido, 5, l1, cc) ch3 := newThreeArray(ido, l1, 5, ch) for k := 0; k < l1; k++ { tr2 := cc3.at(ido-1, 1, k) + cc3.at(ido-1, 1, k) tr3 := cc3.at(ido-1, 3, k) + cc3.at(ido-1, 3, k) ti4 := cc3.at(0, 4, k) + cc3.at(0, 4, k) ti5 := cc3.at(0, 2, k) + cc3.at(0, 2, k) ch3.set(0, k, 0, cc3.at(0, 0, k)+tr2+tr3) cr2 := cc3.at(0, 0, k) + tr11*tr2 + tr12*tr3 cr3 := cc3.at(0, 0, k) + tr12*tr2 + tr11*tr3 ci4 := ti12*ti5 - ti11*ti4 ci5 := ti11*ti5 + ti12*ti4 ch3.set(0, k, 1, cr2-ci5) ch3.set(0, k, 2, cr3-ci4) ch3.set(0, k, 3, cr3+ci4) ch3.set(0, k, 4, cr2+ci5) } if ido == 1 { return } idp2 := ido + 1 for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := idp2 - (i + 1) t2 := cc3.atCmplx(i-1, 2, k) + cmplx.Conj(cc3.atCmplx(ic-1, 1, k)) t3 := cc3.atCmplx(i-1, 4, k) + cmplx.Conj(cc3.atCmplx(ic-1, 3, k)) t4 := cc3.atCmplx(i-1, 4, k) - cmplx.Conj(cc3.atCmplx(ic-1, 3, k)) t5 := cc3.atCmplx(i-1, 2, k) - cmplx.Conj(cc3.atCmplx(ic-1, 1, k)) ch3.setCmplx(i-1, k, 0, cc3.atCmplx(i-1, 0, k)+t2+t3) c2 := cc3.atCmplx(i-1, 0, k) + scale(tr11, t2) + scale(tr12, t3) c3 := cc3.atCmplx(i-1, 0, k) + scale(tr12, t2) + scale(tr11, t3) c4 := scale(ti12, t5) - scale(ti11, t4) c5 := scale(ti11, t5) + scale(ti12, t4) d2 := c2 - cmplx.Conj(swap(c5)) d3 := c3 - cmplx.Conj(swap(c4)) d4 := c3 + cmplx.Conj(swap(c4)) d5 := c2 + cmplx.Conj(swap(c5)) ch3.setCmplx(i-1, k, 1, complex(wa1[i-2], wa1[i-1])*d2) ch3.setCmplx(i-1, k, 2, complex(wa2[i-2], wa2[i-1])*d3) ch3.setCmplx(i-1, k, 3, complex(wa3[i-2], wa3[i-1])*d4) ch3.setCmplx(i-1, k, 4, complex(wa4[i-2], wa4[i-1])*d5) } } } func radbg(ido, ip, l1, idl1 int, cc, c1, c2, ch, ch2, wa []float64) { cc3 := newThreeArray(ido, ip, l1, cc) c13 := newThreeArray(ido, l1, ip, c1) ch3 := newThreeArray(ido, l1, ip, ch) c2m := newTwoArray(idl1, ip, c2) ch2m := newTwoArray(idl1, ip, ch2) arg := 2 * math.Pi / float64(ip) dcp := math.Cos(arg) dsp := math.Sin(arg) ipph := (ip + 1) / 2 nbd := (ido - 1) / 2 if ido < l1 { for i := 0; i < ido; i++ { for k := 0; k < l1; k++ { ch3.set(i, k, 0, cc3.at(i, 0, k)) } } } else { for k := 0; k < l1; k++ { for i := 0; i < ido; i++ { ch3.set(i, k, 0, cc3.at(i, 0, k)) } } } for j := 1; j < ipph; j++ { jc := ip - j j2 := 2 * j for k := 0; k < l1; k++ { ch3.set(0, k, j, cc3.at(ido-1, j2-1, k)+cc3.at(ido-1, j2-1, k)) ch3.set(0, k, jc, cc3.at(0, j2, k)+cc3.at(0, j2, k)) } } if ido != 1 { if nbd < l1 { for j := 1; j < ipph; j++ { jc := ip - j j2 := 2 * j for i := 2; i < ido; i += 2 { ic := ido - i for k := 0; k < l1; k++ { ch3.setCmplx(i-1, k, j, cc3.atCmplx(i-1, j2, k)+cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k))) ch3.setCmplx(i-1, k, jc, cc3.atCmplx(i-1, j2, k)-cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k))) } } } } else { for j := 1; j < ipph; j++ { jc := ip - j j2 := 2 * j for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ic := ido - i ch3.setCmplx(i-1, k, j, cc3.atCmplx(i-1, j2, k)+cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k))) ch3.setCmplx(i-1, k, jc, cc3.atCmplx(i-1, j2, k)-cmplx.Conj(cc3.atCmplx(ic-1, j2-1, k))) } } } } } ar1 := 1.0 ai1 := 0.0 for l := 1; l < ipph; l++ { lc := ip - l ar1h := dcp*ar1 - dsp*ai1 ai1 = dcp*ai1 + dsp*ar1 ar1 = ar1h for ik := 0; ik < idl1; ik++ { c2m.set(ik, l, ch2m.at(ik, 0)+ar1*ch2m.at(ik, 1)) c2m.set(ik, lc, ai1*ch2m.at(ik, ip-1)) } dc2 := ar1 ds2 := ai1 ar2 := ar1 ai2 := ai1 for j := 2; j < ipph; j++ { jc := ip - j ar2h := dc2*ar2 - ds2*ai2 ai2 = dc2*ai2 + ds2*ar2 ar2 = ar2h for ik := 0; ik < idl1; ik++ { c2m.add(ik, l, ar2*ch2m.at(ik, j)) c2m.add(ik, lc, ai2*ch2m.at(ik, jc)) } } } for j := 1; j < ipph; j++ { for ik := 0; ik < idl1; ik++ { ch2m.add(ik, 0, ch2m.at(ik, j)) } } for j := 1; j < ipph; j++ { jc := ip - j for k := 0; k < l1; k++ { ch3.set(0, k, j, c13.at(0, k, j)-c13.at(0, k, jc)) ch3.set(0, k, jc, c13.at(0, k, j)+c13.at(0, k, jc)) } } if ido != 1 { if nbd < l1 { for j := 1; j < ipph; j++ { jc := ip - j for i := 2; i < ido; i += 2 { for k := 0; k < l1; k++ { ch3.setCmplx(i-1, k, j, c13.atCmplx(i-1, k, j)-cmplx.Conj(swap(c13.atCmplx(i-1, k, jc)))) ch3.setCmplx(i-1, k, jc, c13.atCmplx(i-1, k, j)+cmplx.Conj(swap(c13.atCmplx(i-1, k, jc)))) } } } } else { for j := 1; j < ipph; j++ { jc := ip - j for k := 0; k < l1; k++ { for i := 2; i < ido; i += 2 { ch3.setCmplx(i-1, k, j, c13.atCmplx(i-1, k, j)-cmplx.Conj(swap(c13.atCmplx(i-1, k, jc)))) ch3.setCmplx(i-1, k, jc, c13.atCmplx(i-1, k, j)+cmplx.Conj(swap(c13.atCmplx(i-1, k, jc)))) } } } } } if ido == 1 { return } for ik := 0; ik < idl1; ik++ { c2m.set(ik, 0, ch2m.at(ik, 0)) } for j := 1; j < ip; j++ { for k := 0; k < l1; k++ { c13.set(0, k, j, ch3.at(0, k, j)) } } is := -ido - 1 if nbd > l1 { for j := 1; j < ip; j++ { is += ido for k := 0; k < l1; k++ { idij := is for i := 2; i < ido; i += 2 { idij += 2 c13.setCmplx(i-1, k, j, complex(wa[idij-1], wa[idij])*ch3.atCmplx(i-1, k, j)) } } } return } for j := 1; j < ip; j++ { is += ido idij := is for i := 2; i < ido; i += 2 { idij += 2 for k := 0; k < l1; k++ { c13.setCmplx(i-1, k, j, complex(wa[idij-1], wa[idij])*ch3.atCmplx(i-1, k, j)) } } } }