// Copyright ©2018 The Gonum Authors. All rights reserved. // Use of this source code is governed by a BSD-style // license that can be found in the LICENSE file. // This is a translation of the FFTPACK cost functions by // Paul N Swarztrauber, placed in the public domain at // http://www.netlib.org/fftpack/. package fftpack import "math" // Costi initializes the array work which is used in subroutine // Cost. The prime factorization of n together with a tabulation // of the trigonometric functions are computed and stored in work. // // Input parameter: // // n The length of the sequence to be transformed. The method // is most efficient when n-1 is a product of small primes. // // Output parameters: // // work A work array which must be dimensioned at least 3*n. // Different work arrays are required for different values // of n. The contents of work must not be changed between // calls of Cost. // // ifac An integer work array of length at least 15. func Costi(n int, work []float64, ifac []int) { if len(work) < 3*n { panic("fourier: short work") } if len(ifac) < 15 { panic("fourier: short ifac") } if n < 4 { return } dt := math.Pi / float64(n-1) for k := 1; k < n/2; k++ { fk := float64(k) work[k] = 2 * math.Sin(fk*dt) work[n-k-1] = 2 * math.Cos(fk*dt) } Rffti(n-1, work[n:], ifac) } // Cost computes the Discrete Fourier Cosine Transform of an even // sequence x(i). The transform is defined below at output parameter x. // // Cost is the unnormalized inverse of itself since a call of Cost // followed by another call of Cost will multiply the input sequence // x by 2*(n-1). The transform is defined below at output parameter x // // The array work which is used by subroutine Cost must be // initialized by calling subroutine Costi(n,work). // // Input parameters: // // n The length of the sequence x. n must be greater than 1. // The method is most efficient when n-1 is a product of // small primes. // // x An array which contains the sequence to be transformed. // // work A work array which must be dimensioned at least 3*n // in the program that calls Cost. The work array must be // initialized by calling subroutine Costi(n,work) and a // different work array must be used for each different // value of n. This initialization does not have to be // repeated so long as n remains unchanged thus subsequent // transforms can be obtained faster than the first. // // ifac An integer work array of length at least 15. // // Output parameters: // // x for i=1,...,n // x(i) = x(1)+(-1)**(i-1)*x(n) // + the sum from k=2 to k=n-1 // 2*x(k)*cos((k-1)*(i-1)*pi/(n-1)) // // A call of Cost followed by another call of // Cost will multiply the sequence x by 2*(n-1). // Hence Cost is the unnormalized inverse // of itself. // // work Contains initialization calculations which must not be // destroyed between calls of Cost. // // ifac An integer work array of length at least 15. func Cost(n int, x, work []float64, ifac []int) { if len(x) < n { panic("fourier: short sequence") } if len(work) < 3*n { panic("fourier: short work") } if len(ifac) < 15 { panic("fourier: short ifac") } if n < 2 { return } switch n { case 2: x[0], x[1] = x[0]+x[1], x[0]-x[1] case 3: x1p3 := x[0] + x[2] tx2 := 2 * x[1] x[1] = x[0] - x[2] x[0] = x1p3 + tx2 x[2] = x1p3 - tx2 default: c1 := x[0] - x[n-1] x[0] += x[n-1] for k := 1; k < n/2; k++ { kc := n - k - 1 t1 := x[k] + x[kc] t2 := x[k] - x[kc] c1 += work[kc] * t2 t2 *= work[k] x[k] = t1 - t2 x[kc] = t1 + t2 } if n%2 != 0 { x[n/2] *= 2 } Rfftf(n-1, x, work[n:], ifac) xim2 := x[1] x[1] = c1 for i := 3; i < n; i += 2 { xi := x[i] x[i] = x[i-2] - x[i-1] x[i-1] = xim2 xim2 = xi } if n%2 != 0 { x[n-1] = xim2 } } }